IDEAS home Printed from
   My bibliography  Save this article

Extended Poisson process modelling of dilution series data


  • M. J. Faddy
  • D. M. Smith


Data comprising colony counts, or a binary variable representing fertile (or sterile) samples, as a dilution series of the containing medium are analysed by using extended Poisson process modelling. These models form a class of flexible probability distributions that are widely applicable to count and grouped binary data. Standard distributions such as Poisson and binomial, and those representing overdispersion and underdispersion relative to these distributions can be expressed within this class. For all the models in the class, likelihoods can be obtained. These models have not been widely used because of the perceived difficulty of performing the calculations and the lack of associated software. Exact calculation of the probabilities that are involved can be time consuming although accurate approximations that use considerably less computational time are available. Although dilution series data are the focus here, the models are applicable to any count or binary data. A benefit of the approach is the ability to draw likelihood-based inferences from the data. Copyright (c) 2008 Royal Statistical Society.

Suggested Citation

  • M. J. Faddy & D. M. Smith, 2008. "Extended Poisson process modelling of dilution series data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 461-471.
  • Handle: RePEc:bla:jorssc:v:57:y:2008:i:4:p:461-471

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Nigel Stallard & Mike B. Gravenor & Robert N. Curnow, 2006. "Estimating numbers of infectious units from serial dilution assays," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(1), pages 15-30.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:57:y:2008:i:4:p:461-471. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.