IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v55y2006i2p261-280.html
   My bibliography  Save this article

Estimating percentile‐specific treatment effects in counterfactual models: a case‐study of micronutrient supplementation, birth weight and infant mortality

Author

Listed:
  • Francesca Dominici
  • Scott L. Zeger
  • Giovanni Parmigiani
  • Joanne Katz
  • Parul Christian

Abstract

Summary. Clinical trials of micronutrient supplementation are aimed at reducing the risk of infant mortality by increasing birth weight. Because infant mortality is greatest among the low birth weight (LBW) infants (2500 g or under), an effective intervention increases the birth weight among the smallest babies. The paper defines population and counterfactual parameters for estimating the treatment effects on birth weight and on survival as functions of the percentiles of the birth weight distribution. We use a Bayesian approach with data augmentation to approximate the posterior distributions of the parameters, taking into account uncertainty that is associated with the imputation of the counterfactuals. This approach is particularly suitable for exploring the sensitivity of the results to unverifiable modelling assumptions and other prior beliefs. We estimate that the average causal effect of the treatment on birth weight is 72 g (95% posterior regions 33–110 g) and that this causal effect is largest among the LBW infants. Posterior inferences about average causal effects of the treatment on birth weight are robust to modelling assumptions. However, inferences about causal effects for babies at the tails of the birth weight distribution can be highly sensitive to the unverifiable assumption about the correl‐ation between the observed and the counterfactuals birth weights. Among the LBW infants who have a large causal effect of the treatment on birth weight, we estimate that a baby receiving the treatment has 5% less chance of death than if the same baby had received the control. Among the LBW infants, we found weak evidence supporting an additional beneficial effect of the treatment on mortality independent of birth weight.

Suggested Citation

  • Francesca Dominici & Scott L. Zeger & Giovanni Parmigiani & Joanne Katz & Parul Christian, 2006. "Estimating percentile‐specific treatment effects in counterfactual models: a case‐study of micronutrient supplementation, birth weight and infant mortality," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(2), pages 261-280, April.
  • Handle: RePEc:bla:jorssc:v:55:y:2006:i:2:p:261-280
    DOI: 10.1111/j.1467-9876.2006.00533.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2006.00533.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2006.00533.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duncan Lee & Tereza Neocleous, 2010. "Bayesian quantile regression for count data with application to environmental epidemiology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 905-920, November.
    2. Fabian Dunker & Stephan Klasen & Tatyana Krivobokova, 2017. "Asymptotic Distribution and Simultaneous Confidence Bands for Ratios of Quantile Functions," Papers 1710.09009, arXiv.org.
    3. Brian L. Egleston & Robert G. Uzzo & Yu-Ning Wong, 2017. "Latent Class Survival Models Linked by Principal Stratification to Investigate Heterogenous Survival Subgroups Among Individuals With Early-Stage Kidney Cancer," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 534-546, April.
    4. Dandan Xu & Michael J. Daniels & Almut G. Winterstein, 2018. "A Bayesian nonparametric approach to causal inference on quantiles," Biometrics, The International Biometric Society, vol. 74(3), pages 986-996, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:55:y:2006:i:2:p:261-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.