IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v77y2015i1p239-265.html
   My bibliography  Save this article

Estimation of Hüsler–Reiss distributions and Brown–Resnick processes

Author

Listed:
  • Sebastian Engelke
  • Alexander Malinowski
  • Zakhar Kabluchko
  • Martin Schlather

Abstract

type="main" xml:id="rssb12074-abs-0001"> Estimation of extreme value parameters from observations in the max-domain of attraction of a multivariate max-stable distribution commonly uses aggregated data such as block maxima. Multivariate peaks-over-threshold methods, in contrast, exploit additional information from the non-aggregated ‘large’ observations. We introduce an approach based on peaks over thresholds that provides several new estimators for processes η in the max-domain of attraction of the frequently used Hüsler–Reiss model and its spatial extension: Brown–Resnick processes. The method relies on increments η(·)−η(t 0 ) conditional on η(t 0 ) exceeding a high threshold, where t 0 is a fixed location. When the marginals are standardized to the Gumbel distribution, these increments asymptotically form a Gaussian process resulting in computationally simple estimates of the Hüsler–Reiss parameter matrix and particularly enables parametric inference for Brown–Resnick processes based on (high dimensional) multivariate densities. This is a major advantage over composite likelihood methods that are commonly used in spatial extreme value statistics since they rely only on bivariate densities. A simulation study compares the performance of the new estimators with other commonly used methods. As an application, we fit a non-isotropic Brown–Resnick process to the extremes of 12-year data of daily wind speed measurements.

Suggested Citation

  • Sebastian Engelke & Alexander Malinowski & Zakhar Kabluchko & Martin Schlather, 2015. "Estimation of Hüsler–Reiss distributions and Brown–Resnick processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(1), pages 239-265, January.
  • Handle: RePEc:bla:jorssb:v:77:y:2015:i:1:p:239-265
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.2014.77.issue-1
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    2. Engelke, Sebastian & Kabluchko, Zakhar, 2015. "Max-stable processes and stationary systems of Lévy particles," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4272-4299.
    3. Papastathopoulos, Ioannis & Tawn, Jonathan A., 2016. "Conditioned limit laws for inverted max-stable processes," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 214-228.
    4. Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
    5. Lee, Xing Ju & Hainy, Markus & McKeone, James P. & Drovandi, Christopher C. & Pettitt, Anthony N., 2018. "ABC model selection for spatial extremes models applied to South Australian maximum temperature data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 128-144.
    6. Samuel A. Morris & Brian J. Reich & Emeric Thibaud, 2019. "Exploration and Inference in Spatial Extremes Using Empirical Basis Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 555-572, December.
    7. Asenova, Stefka & Segers, Johan, 2022. "Extremes of Markov random fields on block graphs," LIDAM Discussion Papers ISBA 2022013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Belzile, Léo R. & Nešlehová, Johanna G., 2017. "Extremal attractors of Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 68-92.
    9. Hentschel, Manuel & Engelke, Sebastian & Segers, Johan, 2022. "Statistical Inference for Hüsler–Reiss Graphical Models Through Matrix Completions," LIDAM Discussion Papers ISBA 2022032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:77:y:2015:i:1:p:239-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.