IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v65y2003i3p743-758.html
   My bibliography  Save this article

Bayesian inference for non‐stationary spatial covariance structure via spatial deformations

Author

Listed:
  • Alexandra M. Schmidt
  • Anthony O'Hagan

Abstract

Summary. In geostatistics it is common practice to assume that the underlying spatial process is stationary and isotropic, i.e. the spatial distribution is unchanged when the origin of the index set is translated and under rotation about the origin. However, in environmental problems, such assumptions are not realistic since local influences in the correlation structure of the spatial process may be found in the data. The paper proposes a Bayesian model to address the anisot‐ ropy problem. Following Sampson and Guttorp, we define the correlation function of the spatial process by reference to a latent space, denoted by D, where stationarity and isotropy hold. The space where the gauged monitoring sites lie is denoted by G. We adopt a Bayesian approach in which the mapping between G and D is represented by an unknown function d(·). A Gaussian process prior distribution is defined for d(·). Unlike the Sampson–Guttorp approach, the mapping of both gauged and ungauged sites is handled in a single framework, and predictive inferences take explicit account of uncertainty in the mapping. Markov chain Monte Carlo methods are used to obtain samples from the posterior distributions. Two examples are discussed: a simulated data set and the solar radiation data set that also was analysed by Sampson and Guttorp.

Suggested Citation

  • Alexandra M. Schmidt & Anthony O'Hagan, 2003. "Bayesian inference for non‐stationary spatial covariance structure via spatial deformations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 743-758, August.
  • Handle: RePEc:bla:jorssb:v:65:y:2003:i:3:p:743-758
    DOI: 10.1111/1467-9868.00413
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00413
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Zhou & David E. Moorman & Sam Behseta & Hernando Ombao & Babak Shahbaba, 2016. "A Dynamic Bayesian Model for Characterizing Cross-Neuronal Interactions During Decision-Making," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 459-471, April.
    2. Montserrat Fuentes & Peter Guttorp & Peter Challenor, 2003. "Statistical Assessment of Numerical Models," International Statistical Review, International Statistical Institute, vol. 71(2), pages 201-221, August.
    3. Joaquim Henriques Vianna Neto & Alexandra M. Schmidt & Peter Guttorp, 2014. "Accounting for spatially varying directional effects in spatial covariance structures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 103-122, January.
    4. Fidel Ernesto Castro Morales & Lorena Vicini, 2020. "A non-homogeneous Poisson process geostatistical model with spatial deformation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 503-527, September.
    5. Raphaël Huser & Marc G. Genton, 2016. "Non-Stationary Dependence Structures for Spatial Extremes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 470-491, September.
    6. Idris A. Eckley & Guy P. Nason & Robert L. Treloar, 2010. "Locally stationary wavelet fields with application to the modelling and analysis of image texture," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(4), pages 595-616, August.
    7. Bissiri, Pier Giovanni & Cleanthous, Galatia & Emery, Xavier & Nipoti, Bernardo & Porcu, Emilio, 2022. "Nonparametric Bayesian modelling of longitudinally integrated covariance functions on spheres," Computational Statistics & Data Analysis, Elsevier, vol. 176(C).
    8. Horváth, Lajos & Kokoszka, Piotr & Wang, Shixuan, 2020. "Testing normality of data on a multivariate grid," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    9. Marcelo Cunha & Dani Gamerman & Montserrat Fuentes & Marina Paez, 2017. "A non-stationary spatial model for temperature interpolation applied to the state of Rio de Janeiro," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 919-939, November.
    10. Lyndsay Shand & Bo Li, 2017. "Modeling nonstationarity in space and time," Biometrics, The International Biometric Society, vol. 73(3), pages 759-768, September.
    11. Laura Gosoniu & Penelope Vounatsou, 2011. "Non-stationary partition modeling of geostatistical data for malaria risk mapping," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(1), pages 3-13.
    12. Ephraim M. Hanks, 2017. "Modeling Spatial Covariance Using the Limiting Distribution of Spatio-Temporal Random Walks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 497-507, April.
    13. Michele Guindani & Alan E. Gelfand, 2006. "Smoothness Properties and Gradient Analysis Under Spatial Dirichlet Process Models," Methodology and Computing in Applied Probability, Springer, vol. 8(2), pages 159-189, June.
    14. Andrew Gordon Wilson & David A. Knowles & Zoubin Ghahramani, 2011. "Gaussian Process Regression Networks," Papers 1110.4411, arXiv.org.
    15. Kirsner, Daniel & Sansó, Bruno, 2020. "Multi-scale shotgun stochastic search for large spatial datasets," Computational Statistics & Data Analysis, Elsevier, vol. 146(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:65:y:2003:i:3:p:743-758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.