IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v64y2002i4p887-898.html
   My bibliography  Save this article

Inference in smoothing spline analysis of variance

Author

Listed:
  • Wensheng Guo

Abstract

Summary. Smoothing spline analysis of variance decomposes a multivariate function into additive components. This decomposition not only provides an efficient way to model a multivariate function but also leads to meaningful inference by testing whether a certain component equals 0. No formal procedure is yet available to test such a hypothesis. We propose an asymptotic method based on the likelihood ratio to test whether a functional component is 0. This test allows us to choose an optimal model and to compare groups of curves. We first develop the general theory by exploiting the connection between mixed effects models and smoothing splines. We then apply this to compare two groups of curves and to select an optimal model in a two‐dimensional problem. A small simulation is used to assess the finite sample performance of the likelihood ratio test.

Suggested Citation

  • Wensheng Guo, 2002. "Inference in smoothing spline analysis of variance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 887-898, October.
  • Handle: RePEc:bla:jorssb:v:64:y:2002:i:4:p:887-898
    DOI: 10.1111/1467-9868.00367
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9868.00367
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9868.00367?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Uña Álvarez, Jacobo & Roca Pardiñas, Javier, 2009. "Additive models in censored regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3490-3501, July.
    2. Roca-Pardinas, Javier & Cadarso-Suarez, Carmen & Tahoces, Pablo G. & Lado, Maria J., 2008. "Assessing continuous bivariate effects among different groups through nonparametric regression models: An application to breast cancer detection," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1958-1970, January.
    3. Jaroslaw Harezlak & Louise M. Ryan & Jay N. Giedd & Nicholas Lange, 2005. "Individual and Population Penalized Regression Splines for Accelerated Longitudinal Designs," Biometrics, The International Biometric Society, vol. 61(4), pages 1037-1048, December.
    4. Antoniadis, Anestis & Sapatinas, Theofanis, 2007. "Estimation and inference in functional mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4793-4813, June.
    5. Sue J. Welham & Brian R. Cullis & Michael G. Kenward & Robin Thompson, 2006. "The Analysis of Longitudinal Data Using Mixed Model L-Splines," Biometrics, The International Biometric Society, vol. 62(2), pages 392-401, June.
    6. Jiang Lin & Daowen Zhang & Marie Davidian, 2006. "Smoothing Spline-Based Score Tests for Proportional Hazards Models," Biometrics, The International Biometric Society, vol. 62(3), pages 803-812, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:64:y:2002:i:4:p:887-898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.