IDEAS home Printed from https://ideas.repec.org/a/bla/jinfst/v69y2018i3p474-482.html
   My bibliography  Save this article

The mismeasure of science: Citation analysis

Author

Listed:
  • Michael H. MacRoberts
  • Barbara R. MacRoberts

Abstract

For several decades we, among others, have criticized the use of citations for evaluative purposes. Although these criticisms have been noted, they have been largely brushed aside or ignored, not addressed head on. This may be for a number of reasons, but we believe the main one is that these criticisms undermine the desire to have an easy “scientific†—that is, quantitative—method of evaluation. Consequently, we continue and update our criticism of the use of citations for evaluation.

Suggested Citation

  • Michael H. MacRoberts & Barbara R. MacRoberts, 2018. "The mismeasure of science: Citation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(3), pages 474-482, March.
  • Handle: RePEc:bla:jinfst:v:69:y:2018:i:3:p:474-482
    DOI: 10.1002/asi.23970
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/asi.23970
    Download Restriction: no

    File URL: https://libkey.io/10.1002/asi.23970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raminta Pranckutė, 2021. "Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World," Publications, MDPI, vol. 9(1), pages 1-59, March.
    2. Mingkun Wei & Abdolreza Noroozi Chakoli, 2020. "Evaluating the relationship between the academic and social impact of open access books based on citation behaviors and social media attention," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(3), pages 2401-2420, December.
    3. Steffen Lemke & Athanasios Mazarakis & Isabella Peters, 2021. "Conjoint analysis of researchers' hidden preferences for bibliometrics, altmetrics, and usage metrics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 72(6), pages 777-792, June.
    4. Andrey Lovakov & Elena Agadullina, 2019. "Bibliometric analysis of publications from post-Soviet countries in psychological journals in 1992–2017," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 1157-1171, May.
    5. Lyu, Haihua & Bu, Yi & Zhao, Zhenyue & Zhang, Jiarong & Li, Jiang, 2022. "Citation bias in measuring knowledge flow: Evidence from the web of science at the discipline level," Journal of Informetrics, Elsevier, vol. 16(4).
    6. Lawrence Smolinsky & Daniel S. Sage & Aaron J. Lercher & Aaron Cao, 2021. "Citations versus expert opinions: citation analysis of featured reviews of the American Mathematical Society," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3853-3870, May.
    7. Zheng Xie & Yanwu Li & Zhemin Li, 2020. "Assessing and predicting the quality of research master’s theses: an application of scientometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 953-972, August.
    8. Yu-Wei Chang & Dar-Zen Chen & Mu-Hsuan Huang, 2021. "Do extraordinary science and technology scientists balance their publishing and patenting activities?," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-20, November.
    9. Faiza Qayyum & Muhammad Tanvir Afzal, 2019. "Identification of important citations by exploiting research articles’ metadata and cue-terms from content," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 21-43, January.
    10. Abramo, Giovanni, 2018. "Revisiting the scientometric conceptualization of impact and its measurement," Journal of Informetrics, Elsevier, vol. 12(3), pages 590-597.
    11. Alonso Rodríguez-Navarro & Ricardo Brito, 2019. "Probability and expected frequency of breakthroughs: basis and use of a robust method of research assessment," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 213-235, April.
    12. Brito, Ricardo & Navarro, Alonso Rodríguez, 2021. "The inconsistency of h-index: A mathematical analysis," Journal of Informetrics, Elsevier, vol. 15(1).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jinfst:v:69:y:2018:i:3:p:474-482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.asis.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.