IDEAS home Printed from https://ideas.repec.org/a/bla/jfinan/v46y1991i1p239-63.html
   My bibliography  Save this article

Are Stock Returns Predictable? A Test Using Markov Chains

Author

Listed:
  • McQueen, Grant
  • Thorley, Steven

Abstract

This paper uses a Markov chain model to test the random walk hypothesis of stock prices. Given a time series of returns, a Markov chain is defined by letting one state represent high returns and the other represent low returns. The random walk hypothesis restricts the transition probabilities of the Markov change to be equal irrespective of the prior years. Annual real returns are shown to exhibit significant nonrandom walk behavior in the sense that low (high) returns tend to follow runs of high (low) returns in the postwar period. Copyright 1991 by American Finance Association.

Suggested Citation

  • McQueen, Grant & Thorley, Steven, 1991. " Are Stock Returns Predictable? A Test Using Markov Chains," Journal of Finance, American Finance Association, vol. 46(1), pages 239-263, March.
  • Handle: RePEc:bla:jfinan:v:46:y:1991:i:1:p:239-63
    as

    Download full text from publisher

    File URL: http://links.jstor.org/sici?sici=0022-1082%28199103%2946%3A1%3C239%3AASRPAT%3E2.0.CO%3B2-I&origin=repec
    File Function: full text
    Download Restriction: Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emekter, Riza & Jirasakuldech, Benjamas & Snaith, Sean M., 2009. "Nonlinear dynamics in foreign exchange excess returns: Tests of asymmetry," Journal of Multinational Financial Management, Elsevier, vol. 19(3), pages 179-192, July.
    2. Paul Zimmerman & John Yun & Christopher Taylor, 2013. "Edgeworth Price Cycles in Gasoline: Evidence from the United States," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 42(3), pages 297-320, May.
    3. João Nicolau, 2014. "A New Model for Multivariate Markov Chains," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1124-1135, December.
    4. Steve Beveridege & Cyril Oickle, 1997. "Long memory in the Canadian stock market," Applied Financial Economics, Taylor & Francis Journals, vol. 7(6), pages 667-672.
    5. Tan, Baris & Yilmaz, Kamil, 2002. "Markov chain test for time dependence and homogeneity: An analytical and empirical evaluation," European Journal of Operational Research, Elsevier, vol. 137(3), pages 524-543, March.
    6. João Nicolau & Flavio Riedlinger, 2015. "Estimation and inference in multivariate Markov chains," Statistical Papers, Springer, vol. 56(4), pages 1163-1173, November.
    7. Charles Ka Yui Leung & Patrick Wai Yin Cheung & Erica Jiajia Ding, 2008. "Intra-metropolitan Office Price and Trading Volume Dynamics: Evidence from Hong Kong," International Real Estate Review, Asian Real Estate Society, vol. 11(2), pages 47-74.
    8. Yang, Jian & Cabrera, Juan & Wang, Tao, 2010. "Nonlinearity, data-snooping, and stock index ETF return predictability," European Journal of Operational Research, Elsevier, vol. 200(2), pages 498-507, January.
    9. repec:eee:finana:v:54:y:2017:i:c:p:176-191 is not listed on IDEAS
    10. Chiang, Raymond & Liu, Peter & Okunev, John, 1995. "Modelling mean reversion of asset prices towards their fundamental value," Journal of Banking & Finance, Elsevier, vol. 19(8), pages 1327-1340, November.
    11. Chiang, Raymond & Davidson, Ian & Okunev, John, 1997. "Some further theoretical and empirical implications regarding the relationship between earnings, dividends and stock prices," Journal of Banking & Finance, Elsevier, vol. 21(1), pages 17-35, January.
    12. Wang, Tao & Yang, Jian, 2010. "Nonlinearity and intraday efficiency tests on energy futures markets," Energy Economics, Elsevier, vol. 32(2), pages 496-503, March.
    13. Juan Reboredo & José Matías & Raquel Garcia-Rubio, 2012. "Nonlinearity in Forecasting of High-Frequency Stock Returns," Computational Economics, Springer;Society for Computational Economics, vol. 40(3), pages 245-264, October.
    14. Dmitry Kulikov, 2012. "Testing for Rational Speculative Bubbles on the Estonian Stock Market," Research in Economics and Business: Central and Eastern Europe, Tallinn School of Economics and Business Administration, Tallinn University of Technology, vol. 4(1).
    15. Baur, Robert Frederick, 1992. "Overreaction in futures markets," ISU General Staff Papers 1992010108000010973, Iowa State University, Department of Economics.
    16. Chen, Son-Nan & Jeon, Kisuk, 1998. "Mean reversion behavior of the returns on currency assets," International Review of Economics & Finance, Elsevier, vol. 7(2), pages 185-200.
    17. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Miranda, José G.V. & García-Rubio, Raquel, 2013. "How fast do stock prices adjust to market efficiency? Evidence from a detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(7), pages 1631-1637.
    18. Brett Olsen & Jeffrey Stokes, 2015. "Is Farm Real Estate The Next Bubble?," The Journal of Real Estate Finance and Economics, Springer, vol. 50(3), pages 355-376, April.
    19. N. Vijayamohanan Pillai, 2004. "Causality and error correction in Markov chain: Inflation in India revisited," Centre for Development Studies, Trivendrum Working Papers 366, Centre for Development Studies, Trivendrum, India.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jfinan:v:46:y:1991:i:1:p:239-63. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/afaaaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.