IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v86y2018i2p169-188.html
   My bibliography  Save this article

Optimal Adaptive Designs with Inverse Ordinary Differential Equations

Author

Listed:
  • Eugene Demidenko

Abstract

Many industrial and engineering applications are built on the basis of differential equations. In some cases, parameters of these equations are not known and are estimated from measurements leading to an inverse problem. Unlike many other papers, we suggest to construct new designs in the adaptive fashion ‘on the go’ using the A‐optimality criterion. This approach is demonstrated on determination of optimal locations of measurements and temperature sensors in several engineering applications: (1) determination of the optimal location to measure the height of a hanging wire in order to estimate the sagging parameter with minimum variance (toy example), (2) adaptive determination of optimal locations of temperature sensors in a one‐dimensional inverse heat transfer problem and (3) adaptive design in the framework of a one‐dimensional diffusion problem when the solution is found numerically using the finite difference approach. In all these problems, statistical criteria for parameter identification and optimal design of experiments are applied. Statistical simulations confirm that estimates derived from the adaptive optimal design converge to the true parameter values with minimum sum of variances when the number of measurements increases. We deliberately chose technically uncomplicated industrial problems to transparently introduce principal ideas of statistical adaptive design.

Suggested Citation

  • Eugene Demidenko, 2018. "Optimal Adaptive Designs with Inverse Ordinary Differential Equations," International Statistical Review, International Statistical Institute, vol. 86(2), pages 169-188, August.
  • Handle: RePEc:bla:istatr:v:86:y:2018:i:2:p:169-188
    DOI: 10.1111/insr.12233
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12233
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:86:y:2018:i:2:p:169-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.