Author
Abstract
In application areas which involve digitised speech and audio signals, such as coding, digital remastering of old recordings and recognition of speech, it is often desirable to reduce the effects of noise with the aim of enhancing intelligibility and perceived sound quality. We consider the case where noise sources contain non‐Gaussian, impulsive elements superimposed upon a continuous Gaussian background. Such a situation arises in areas such as communications channels, telephony and gramophone recordings where impulsive effects might be caused by electromagnetic interference (lightning strikes), electrical switching noise or defects in recording media, while electrical circuit noise or the combined effect of many distant atmospheric events lead to a continuous Gaussian component. In this paper we discuss the background to this type of noise degradation and describe briefly some existing statistical techniques for noise reduction. We propose new methods for enhancement based upon Markov chain Monte Carlo (MCMC) simulation. Signals are modelled as autoregressive moving‐average (ARMA); while noise sources are treated as discrete and continuous mixtures of Gaussian distributions. Results are presented for both real and artificially corrupted data sequences, illustrating the potential of the new methods. Dans les applications de digitalisation de la parole et des signaux audios, tels que le codage, la restauration degitale de vieux enregistrements sonores et la reconnaissance de la parole, il cst souvent é de é les effets dus a la presence de bruit pour améliorer la clartá et la qualiteé du son. Nous consid´rons le cas où la source de burit contient des él´ments impulsifs non‐gaussien, superposé au bruite gaussien de fond. Ce genre de situation se manifeste notamment en téléphonie mobile, en communication par cable et sur des vieux enregistrements gramophoniques. le bruit de nature impulsive peut etre du aux interférences électromagnétiques, sux commutations électriques environoantes, ou à des défauts au support sonore. Par contre, le bruit provenant de circuits électriques ou de l'effet cmbiné de plusieurs évenements atmosphériques lointains se trabuit traduit par du bruit de nature gausienne. Nous présentons dans cet article les principes de ce genre de dégradation et faisons une description sommaire de quelques méthodes déjgravea; existantes pour la réduction du bruit. nous proposons des aprochhes nouvelles pour I'amélioration des signaux, baseacute;es sur la méthode Monte carlo‐carlo‐chaines de Markov(MCMC). les signaux sont considéliseacute;s comme des procédeacute;s autoreéaires, discrétes et continues, de distributions Gaussiennes. Nuus présentons des reéukats sur des séquences synthétiques et réelles entachées de bruit pour illustrer les capacit´s de ces méthodes.
Suggested Citation
Simon J. Godsill, 1997.
"Bayesian Enhancement of Speech and Audio Signals which can be Modelled as ARMA Processes,"
International Statistical Review, International Statistical Institute, vol. 65(1), pages 1-21, April.
Handle:
RePEc:bla:istatr:v:65:y:1997:i:1:p:1-21
DOI: 10.1111/j.1751-5823.1997.tb00365.x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:65:y:1997:i:1:p:1-21. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.