IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v8y2004i1-2p45-68.html
   My bibliography  Save this article

Applying Ecological Input‐Output Flow Analysis to Material Flows in Industrial Systems: Part I: Tracing Flows

Author

Listed:
  • Reid Bailey
  • Janet K. Allen
  • Bert Bras

Abstract

Input‐output mathematics, which allows a modeler to fully consider direct and indirect relationships among conserved flows in a system, has a long history in economics with prominent use dating to Leontief in the 1930s. Nearly all previous industrial applications of input‐output analysis have been grounded in the monetary flows of an economy. Here however, because of the central nature of physical flows in the environmental impact of industry, we consider physical flows to be a fundamental component of an industrial economy. Hence, we propose an input‐output based approach for modeling physical flows in industry independent of their monetary implications. In this first part of a two‐part article, a framework for using input‐output mathematics to model material and energy flows is constructed from a foundation laid by previous research in nutrient and energy cycling in natural ecosystems. The mathematics of input‐output flow analysis is presented from an ecological perspective, culminating in two core capabilities: tracing of flows with environs (investigated in this article) and characterizing system behavior with flow metrics (presented in the second article). We assert that environ analysis is an effective means for tracing flows through industrial systems while fully considering direct and indirect flow paths. We explore material flows of aluminum and five other metals in depth using environ analysis in this article.

Suggested Citation

  • Reid Bailey & Janet K. Allen & Bert Bras, 2004. "Applying Ecological Input‐Output Flow Analysis to Material Flows in Industrial Systems: Part I: Tracing Flows," Journal of Industrial Ecology, Yale University, vol. 8(1‐2), pages 45-68, January.
  • Handle: RePEc:bla:inecol:v:8:y:2004:i:1-2:p:45-68
    DOI: 10.1162/1088198041269346
    as

    Download full text from publisher

    File URL: https://doi.org/10.1162/1088198041269346
    Download Restriction: no

    File URL: https://libkey.io/10.1162/1088198041269346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Picciolo, Francesco & Papandreou, Andreas & Hubacek, Klaus & Ruzzenenti, Franco, 2017. "How crude oil prices shape the global division of labor," Applied Energy, Elsevier, vol. 189(C), pages 753-761.
    2. Figge, Frank & Thorpe, Andrea Stevenson & Good, Jason, 2021. "Us before me: A group level approach to the circular economy," Ecological Economics, Elsevier, vol. 179(C).
    3. He, He & Reynolds, Christian John & Li, Linyang & Boland, John, 2019. "Assessing net energy consumption of Australian economy from 2004–05 to 2014–15: Environmentally-extended input-output analysis, structural decomposition analysis, and linkage analysis," Applied Energy, Elsevier, vol. 240(C), pages 766-777.
    4. Hashimoto, Seiji & Daigo, Ichiro & Eckelman, Matthew & Reck, Barbara, 2010. "Measuring the status of stainless steel use in the Japanese socio-economic system," Resources, Conservation & Recycling, Elsevier, vol. 54(10), pages 737-743.
    5. Bailey, Reid & Bras, Bert & Allen, Janet K., 2008. "Measuring material cycling in industrial systems," Resources, Conservation & Recycling, Elsevier, vol. 52(4), pages 643-652.
    6. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    7. Anna Schulte & Daniel Maga & Nils Thonemann, 2021. "Combining Life Cycle Assessment and Circularity Assessment to Analyze Environmental Impacts of the Medical Remanufacturing of Electrophysiology Catheters," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    8. Figge, Frank & Thorpe, Andrea Stevenson & Givry, Philippe & Canning, Louise & Franklin-Johnson, Elizabeth, 2018. "Longevity and Circularity as Indicators of Eco-Efficient Resource Use in the Circular Economy," Ecological Economics, Elsevier, vol. 150(C), pages 297-306.
    9. Bösch, Matthias & Jochem, Dominik & Weimar, Holger & Dieter, Matthias, 2015. "Physical input-output accounting of the wood and paper flow in Germany," Resources, Conservation & Recycling, Elsevier, vol. 94(C), pages 99-109.
    10. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    11. Zhang, Yan & Yang, Zhifeng & Fath, Brian D. & Li, Shengsheng, 2010. "Ecological network analysis of an urban energy metabolic system: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 221(16), pages 1865-1879.
    12. Yazan, Devrim Murat, 2016. "Constructing joint production chains: An enterprise input-output approach for alternative energy use," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 38-52.
    13. Coskun, Huseyin, 2018. "Dynamic Ecological System Measures," OSF Preprints j2pd3, Center for Open Science.
    14. Soo Huey Teh & Thomas Wiedmann & Stephen Moore, 2018. "Mixed-unit hybrid life cycle assessment applied to the recycling of construction materials," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-25, December.
    15. Zhang, Yan & Lu, Hanjing & Fath, Brian D. & Zheng, Hongmei, 2016. "Modelling urban nitrogen metabolic processes based on ecological network analysis: A case of study in Beijing, China," Ecological Modelling, Elsevier, vol. 337(C), pages 29-38.
    16. Coskun, Huseyin, 2018. "Static Ecological System Analysis," OSF Preprints zqxc5, Center for Open Science.
    17. Duan, Ning & Fan, Wang & Changbo, Zhou & Chunlei, Zhu & Hongbing, Yu, 2010. "Analysis of pollution materials generated from electrolytic manganese industries in China," Resources, Conservation & Recycling, Elsevier, vol. 54(8), pages 506-511.
    18. Min, Yong & Jin, Xiaogang & Chang, Jie & Peng, Changhui & Gu, Baojing & Ge, Ying & Zhong, Yang, 2011. "Weak indirect effects inherent to nitrogen biogeochemical cycling within anthropogenic ecosystems: A network environ analysis," Ecological Modelling, Elsevier, vol. 222(17), pages 3277-3284.
    19. Shyamal Gondkar & Sivakumar Sreeramagiri & Edwin Zondervan, 2012. "Methodology for Assessment and Optimization of Industrial Eco-Systems," Challenges, MDPI, vol. 3(1), pages 1-21, June.
    20. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2017. "Household carbon footprints in the Baltic States: A global multi-regional input–output analysis from 1995 to 2011," Applied Energy, Elsevier, vol. 189(C), pages 780-788.
    21. Coskun, Huseyin, 2018. "Dynamic Ecological System Analysis," OSF Preprints 35xkb, Center for Open Science.
    22. Lu Liu & Jinhua Li & Zhibin Jia & Jing Liu, 2022. "Industrial metabolism analysis of a Chinese wine industry chain based on material flow and input–output analyses," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 448-461, April.
    23. Zhang, Yan & Yang, Zhifeng & Yu, Xiangyi, 2009. "Ecological network and emergy analysis of urban metabolic systems: Model development, and a case study of four Chinese cities," Ecological Modelling, Elsevier, vol. 220(11), pages 1431-1442.
    24. Coskun, Huseyin, 2018. "Static Ecological System Measures," OSF Preprints g4xzt, Center for Open Science.
    25. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2014. "Analysis of the energy metabolism of urban socioeconomic sectors and the associated carbon footprints: Model development and a case study for Beijing," Energy Policy, Elsevier, vol. 73(C), pages 540-551.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:8:y:2004:i:1-2:p:45-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.