IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v29y2025i5p1882-1896.html
   My bibliography  Save this article

Modeling material flow dynamics in coupled natural‐industrial ecosystems for resilience to climate change: A case study on a soybean‐based industrial ecosystem

Author

Listed:
  • William Farlessyost
  • Shweta Singh

Abstract

Industrial ecosystems are coupled with natural systems, which causes the material flow dynamics in the network to be affected by the mechanistic dynamics of each node. However, current material flow dynamics studies do not capture these mechanistic and nonlinear dynamics to evaluate material flows in networks, thus missing its role in designing resilient industrial ecosystems. In this work, we present a methodology to overcome this limitation and model material flow dynamics in a coupled natural‐industrial network by accounting for underlying nonlinear dynamics at each node. We propose a three‐step methodology: first, creating accurate surrogate models using liquid time‐constant (LTC) neural networks to capture node‐specific behavior; second, coupling these individual node models to simulate material flow dynamics in the network; and third, evaluating resilience by measuring the system's ability to maintain production levels under climate stress. Applied to a soybean‐based biodiesel production network in Champaign County, Illinois (2006–2096), our analysis reveals significant vulnerability differences between climate scenarios, with the RCP 8.5 scenario triggering production failures approximately 10 years earlier than RCP 4.5 (2016 vs. 2026), exhibiting higher failure frequency and requiring longer recovery periods. Smaller farms (450 ha) demonstrated substantially higher import dependency, while medium farms (500 ha) reached a critical bifurcation point around 2050 under RCP 8.5, indicating a systemic tipping point. These findings provide insights for policymakers and industrial managers to implement targeted interventions, supply chain diversification, and adaptive management strategies, thereby enhancing system resilience while offering industrial ecology practitioners a methodology for modeling material flow dynamics in a coupled natural‐industrial network.

Suggested Citation

  • William Farlessyost & Shweta Singh, 2025. "Modeling material flow dynamics in coupled natural‐industrial ecosystems for resilience to climate change: A case study on a soybean‐based industrial ecosystem," Journal of Industrial Ecology, Yale University, vol. 29(5), pages 1882-1896, October.
  • Handle: RePEc:bla:inecol:v:29:y:2025:i:5:p:1882-1896
    DOI: 10.1111/jiec.70087
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.70087
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.70087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:29:y:2025:i:5:p:1882-1896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.