Author
Listed:
- Carlo Schmid
- Fabian Kastner
- Dachuan Zhang
- Silke Langenberg
- Stefanie Hellweg
Abstract
Building material stock studies are essential for advancing the circular economy in construction. However, existing models often lack both accuracy and scalability. While machine learning has demonstrated significant potential to enhance predictive accuracy, its adoption has been hindered by a shortage of high‐quality training data. In this study, we introduce a novel methodology leveraging a large language model to extract previously untapped building material data from building energy performance certificates with a focus on exterior walls. This approach enabled us to create a dataset of over 20,000 buildings—significantly larger than those used in previous studies. Leveraging this dataset, we developed a machine learning model to predict material composition based on building characteristics such as construction year, use, and location. Furthermore, we integrated knowledge of construction history to estimate the material stock of walls in terms of volume, mass, and associated CO2 emissions for each building in the dataset. Our analysis revealed significant regional variations in material use patterns, emphasizing the critical role of location—a parameter often overlooked in existing building material stock models. These findings provide valuable insights for improving building stock modeling and highlight the importance of regionally tailored policies in advancing the circular economy in the construction sector.
Suggested Citation
Carlo Schmid & Fabian Kastner & Dachuan Zhang & Silke Langenberg & Stefanie Hellweg, 2025.
"Spatiotemporal mapping of Swiss exterior wall material stock using a large language model and architectural history,"
Journal of Industrial Ecology, Yale University, vol. 29(4), pages 1350-1363, August.
Handle:
RePEc:bla:inecol:v:29:y:2025:i:4:p:1350-1363
DOI: 10.1111/jiec.70058
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:29:y:2025:i:4:p:1350-1363. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.