Author
Listed:
- Carlos Felipe Blanco
- Paul Behrens
- Martina Vijver
- Willie Peijnenburg
- Joris Quik
- Stefano Cucurachi
Abstract
Assessing the safety and sustainability of novel technologies while they are still in the early research and development stages is the most effective way to avoid undesired outcomes. However, the journey from idea to market is highly uncertain and involves intensive trial and error as technology developers attempt to optimize material choices and product configurations. Designs evolve quickly, and assessing their risks and impacts while numerous factors remain undetermined is challenging. The standard practice is to evaluate a limited subset of scenarios that can guide design choices. However, selecting scenarios from hundreds of undetermined factors without a systematic sensitivity screening may leave out important improvement opportunities. To provide well‐informed guidance, the evaluated scenarios should be selected based on factors that are most influential to the safety and sustainability impacts of the technology. We propose an approach that accomplishes this by incorporating a wide spectrum of undetermined factors, both intrinsic and extrinsic to the technology design. The assessment models are then screened for highly‐sensitive factors using global sensitivity analysis. Strategies to reduce uncertainty on highly influential factors are proposed for subsequent iterations, and the residual factors for which uncertainty cannot be further reduced yet remain influential are selected as a basis for proposed “sensitive scenarios” and improvement roadmaps. We demonstrate the framework with an emerging photovoltaics case study. Over a hundred uncertain factors are reduced to less than five which, if optimized, would substantially improve the future safety and sustainability performance of the technology as well as reduce the uncertainty around it.
Suggested Citation
Carlos Felipe Blanco & Paul Behrens & Martina Vijver & Willie Peijnenburg & Joris Quik & Stefano Cucurachi, 2025.
"A framework for guiding safe and sustainable‐by‐design innovation,"
Journal of Industrial Ecology, Yale University, vol. 29(1), pages 47-65, February.
Handle:
RePEc:bla:inecol:v:29:y:2025:i:1:p:47-65
DOI: 10.1111/jiec.13609
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:29:y:2025:i:1:p:47-65. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.