Author
Listed:
- Martin Baumers
- Chris Tuck
- Ricky Wildman
- Ian Ashcroft
- Emma Rosamond
- Richard Hague
Abstract
The supply chains found in modern manufacturing are often complex and long. The resulting opacity poses a significant barrier to the measurement and minimization of energy consumption and therefore to the implementation of sustainable manufacturing. The current article investigates whether the adoption of additive manufacturing (AM) technology can be used to reach transparency in terms of energy and financial inputs to manufacturing operations. AM refers to the use of a group of electricity‐driven technologies capable of combining materials to manufacture geometrically complex products in a single digitally controlled process step, entirely without molds, dies, or other tooling. The single‐step nature affords full measurability with respect to process energy inputs and production costs. However, the parallel character of AM (allowing the contemporaneous production of multiple parts) poses previously unconsidered problems in the estimation of manufacturing resource consumption. This research discusses the implementation of a tool for the estimation of process energy flows and costs occurring in the AM technology variant direct metal laser sintering. It is demonstrated that accurate predictions can be made for the production of a basket of sample parts. Further, it is shown that, unlike conventional processes, the quantity and variety of parts demanded and the resulting ability to fully utilize the available machine capacity have an impact on process efficiency. It is also demonstrated that cost minimization in additive manufacturing may lead to the minimization of process energy consumption, thereby motivating sustainability improvements.
Suggested Citation
Martin Baumers & Chris Tuck & Ricky Wildman & Ian Ashcroft & Emma Rosamond & Richard Hague, 2013.
"Transparency Built‐in,"
Journal of Industrial Ecology, Yale University, vol. 17(3), pages 418-431, June.
Handle:
RePEc:bla:inecol:v:17:y:2013:i:3:p:418-431
DOI: 10.1111/j.1530-9290.2012.00512.x
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:17:y:2013:i:3:p:418-431. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.