IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v78y2022i3p1168-1180.html
   My bibliography  Save this article

Nonparametric estimation in an illness‐death model with component‐wise censoring

Author

Listed:
  • Anne Eaton
  • Yifei Sun
  • James Neaton
  • Xianghua Luo

Abstract

In disease settings where study participants are at risk for death and a serious nonfatal event, composite endpoints defined as the time until the earliest of death or the nonfatal event are often used as the primary endpoint in clinical trials. In practice, if the nonfatal event can only be detected at clinic visits and the death time is known exactly, the resulting composite endpoint exhibits “component‐wise censoring.” The standard method used to estimate event‐free survival in this setting fails to account for component‐wise censoring. We apply a kernel smoothing method previously proposed for a marker process in a novel way to produce a nonparametric estimator for event‐free survival that accounts for component‐wise censoring. The key insight that allows us to apply this kernel method is thinking of nonfatal event status as an intermittently observed binary time‐dependent variable rather than thinking of time to the nonfatal event as interval‐censored. We also propose estimators for the probability in state and restricted mean time in state for reversible or irreversible illness‐death models, under component‐wise censoring, and derive their large‐sample properties. We perform a simulation study to compare our method to existing multistate survival methods and apply the methods on data from a large randomized trial studying a multifactor intervention for reducing morbidity and mortality among men at above average risk of coronary heart disease.

Suggested Citation

  • Anne Eaton & Yifei Sun & James Neaton & Xianghua Luo, 2022. "Nonparametric estimation in an illness‐death model with component‐wise censoring," Biometrics, The International Biometric Society, vol. 78(3), pages 1168-1180, September.
  • Handle: RePEc:bla:biomet:v:78:y:2022:i:3:p:1168-1180
    DOI: 10.1111/biom.13482
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13482
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yifei Sun & Chiung-Yu Huang & Mei-Cheng Wang, 2017. "Nonparametric Benefit–Risk Assessment Using Marker Process in the Presence of a Terminal Event," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 826-836, April.
    2. Hongyuan Cao & Mathew M. Churpek & Donglin Zeng & Jason P. Fine, 2015. "Analysis of the Proportional Hazards Model With Sparse Longitudinal Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1187-1196, September.
    3. Lihui Zhao & Brian Claggett & Lu Tian & Hajime Uno & Marc A. Pfeffer & Scott D. Solomon & Lorenzo Trippa & L. J. Wei, 2016. "On the restricted mean survival time curve in survival analysis," Biometrics, The International Biometric Society, vol. 72(1), pages 215-221, March.
    4. Jinfeng Xu & John D. Kalbfleisch & Beechoo Tai, 2010. "Statistical Analysis of Illness–Death Processes and Semicompeting Risks Data," Biometrics, The International Biometric Society, vol. 66(3), pages 716-725, September.
    5. William B. Goggins & Dianne M. Finkelstein & Alan M. Zaslavsky, 1999. "Applying the Cox Proportional Hazards Model When the Change Time of a Binary Time-Varying Covariate Is Interval Censored," Biometrics, The International Biometric Society, vol. 55(2), pages 445-451, June.
    6. Kyu Ha Lee & Virginie Rondeau & Sebastien Haneuse, 2017. "Accelerated failure time models for semi‐competing risks data in the presence of complex censoring," Biometrics, The International Biometric Society, vol. 73(4), pages 1401-1412, December.
    7. Guoqing Diao & Donglin Zeng & Chunlei Ke & Haijun Ma & Qi Jiang & Joseph G Ibrahim, 2018. "Semiparametric regression analysis for composite endpoints subject to componentwise censoring," Biometrika, Biometrika Trust, vol. 105(2), pages 403-418.
    8. Halina Frydman & Michael Szarek, 2009. "Nonparametric Estimation in a Markov “Illness–Death” Process from Interval Censored Observations with Missing Intermediate Transition Status," Biometrics, The International Biometric Society, vol. 65(1), pages 143-151, March.
    9. Somnath Datta & Rajeshwari Sundaram, 2006. "Nonparametric Estimation of Stage Occupation Probabilities in a Multistage Model with Current Status Data," Biometrics, The International Biometric Society, vol. 62(3), pages 829-837, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Nevo & Deborah Blacker & Eric B. Larson & Sebastien Haneuse, 2022. "Modeling semi‐competing risks data as a longitudinal bivariate process," Biometrics, The International Biometric Society, vol. 78(3), pages 922-936, September.
    2. Qui Tran & Kelley M. Kidwell & Alex Tsodikov, 2018. "A joint model of cancer incidence, metastasis, and mortality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 385-406, July.
    3. Chi Hyun Lee & Jing Ning & Yu Shen, 2018. "Analysis of restricted mean survival time for length†biased data," Biometrics, The International Biometric Society, vol. 74(2), pages 575-583, June.
    4. Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
    5. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    6. Harrison T. Reeder & Junwei Lu & Sebastien Haneuse, 2023. "Penalized estimation of frailty‐based illness–death models for semi‐competing risks," Biometrics, The International Biometric Society, vol. 79(3), pages 1657-1669, September.
    7. Menggang Yu & Constantin T. Yiannoutsos, 2015. "Marginal and Conditional Distribution Estimation from Double-sampled Semi-competing Risks Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 87-103, March.
    8. repec:jss:jstsof:36:i02 is not listed on IDEAS
    9. Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
    10. Lu Tian & Hua Jin & Hajime Uno & Ying Lu & Bo Huang & Keaven M. Anderson & LJ Wei, 2020. "On the empirical choice of the time window for restricted mean survival time," Biometrics, The International Biometric Society, vol. 76(4), pages 1157-1166, December.
    11. Boumezoued, Alexandre & Karoui, Nicole El & Loisel, Stéphane, 2017. "Measuring mortality heterogeneity with multi-state models and interval-censored data," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 67-82.
    12. Dongdong Li & X. Joan Hu & Mary L. McBride & John J. Spinelli, 2020. "Multiple event times in the presence of informative censoring: modeling and analysis by copulas," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 573-602, July.
    13. Yang Li & Hao Liu & Xiaoshen Wang & Wanzhu Tu, 2022. "Semi‐parametric time‐to‐event modelling of lengths of hospital stays," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1623-1647, November.
    14. John D. Rice & Alex Tsodikov, 2017. "Semiparametric time-to-event modeling in the presence of a latent progression event," Biometrics, The International Biometric Society, vol. 73(2), pages 463-472, June.
    15. Lea Kats & Malka Gorfine, 2023. "An accelerated failure time regression model for illness–death data: A frailty approach," Biometrics, The International Biometric Society, vol. 79(4), pages 3066-3081, December.
    16. Mário de Castro & Ming‐Hui Chen & Yuanye Zhang, 2015. "Bayesian path specific frailty models for multi‐state survival data with applications," Biometrics, The International Biometric Society, vol. 71(3), pages 760-771, September.
    17. Beate Sildnes & Bo Henry Lindqvist, 2018. "Modeling of semi-competing risks by means of first passage times of a stochastic process," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 153-175, January.
    18. Ross L. Prentice, 2022. "On the targets of inference with multivariate failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 546-559, October.
    19. Zijing Yang & Chengfeng Zhang & Yawen Hou & Zheng Chen, 2023. "Analysis of dynamic restricted mean survival time based on pseudo‐observations," Biometrics, The International Biometric Society, vol. 79(4), pages 3690-3700, December.
    20. Gourieroux, Christian & Lu, Yang, 2015. "Love and death: A Freund model with frailty," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 191-203.
    21. Zhuowei Sun & Hongyuan Cao & Li Chen, 2022. "Regression analysis of additive hazards model with sparse longitudinal covariates," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 263-281, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:78:y:2022:i:3:p:1168-1180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.