IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v76y2020i2p643-653.html
   My bibliography  Save this article

Designing precision medicine trials to yield a greater population impact

Author

Listed:
  • Ying‐Qi Zhao
  • Michael L. LeBlanc

Abstract

Traditionally, a clinical trial is conducted comparing treatment to standard care for all patients. However, it could be inefficient given patients’ heterogeneous responses to treatments, and rapid advances in the molecular understanding of diseases have made biomarker‐based clinical trials increasingly popular. We propose a new targeted clinical trial design, termed as Max‐Impact design, which selects the appropriate subpopulation for a clinical trial and aims to optimize population impact once the trial is completed. The proposed design not only gains insights on the patients who would be included in the trial but also considers the benefit to the excluded patients. We develop novel algorithms to construct enrollment rules for optimizing population impact, which are fairly general and can be applied to various types of outcomes. Simulation studies and a data example from the SWOG Cancer Research Network demonstrate the competitive performance of our proposed method compared to traditional untargeted and targeted designs.

Suggested Citation

  • Ying‐Qi Zhao & Michael L. LeBlanc, 2020. "Designing precision medicine trials to yield a greater population impact," Biometrics, The International Biometric Society, vol. 76(2), pages 643-653, June.
  • Handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:643-653
    DOI: 10.1111/biom.13161
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13161
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuanjia Wang & Haoda Fu & Donglin Zeng, 2018. "Learning Optimal Personalized Treatment Rules in Consideration of Benefit and Risk: With an Application to Treating Type 2 Diabetes Patients With Insulin Therapies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosamarie Frieri & William Fisher Rosenberger & Nancy Flournoy & Zhantao Lin, 2023. "Design considerations for two‐stage enrichment clinical trials," Biometrics, The International Biometric Society, vol. 79(3), pages 2565-2576, September.
    2. Nigel Stallard, 2023. "Adaptive enrichment designs with a continuous biomarker," Biometrics, The International Biometric Society, vol. 79(1), pages 9-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyang Huang & Jin Xu, 2020. "Estimating individualized treatment rules with risk constraint," Biometrics, The International Biometric Society, vol. 76(4), pages 1310-1318, December.
    2. Yanqing Wang & Yingqi Zhao & Yingye Zheng, 2022. "Targeted Search for Individualized Clinical Decision Rules to Optimize Clinical Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 564-581, December.
    3. Daniel F. Pellatt, 2022. "PAC-Bayesian Treatment Allocation Under Budget Constraints," Papers 2212.09007, arXiv.org, revised Jun 2023.
    4. Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
    5. Yanqing Wang & Ying‐Qi Zhao & Yingye Zheng, 2020. "Learning‐based biomarker‐assisted rules for optimized clinical benefit under a risk constraint," Biometrics, The International Biometric Society, vol. 76(3), pages 853-862, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:76:y:2020:i:2:p:643-653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.