IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i2p582-592.html
   My bibliography  Save this article

Linked matrix factorization

Author

Listed:
  • Michael J. O'Connell
  • Eric F. Lock

Abstract

Several recent methods address the dimension reduction and decomposition of linked high‐content data matrices. Typically, these methods consider one dimension, rows or columns, that is shared among the matrices. This shared dimension may represent common features measured for different sample sets (horizontal integration) or a common sample set with features from different platforms (vertical integration). We introduce an approach for simultaneous horizontal and vertical integration, Linked Matrix Factorization (LMF), for the general case where some matrices share rows (e.g., features) and some share columns (e.g., samples). Our motivating application is a cytotoxicity study with accompanying genomic and molecular chemical attribute data. The toxicity matrix (cell lines × chemicals) shares samples with a genotype matrix (cell lines × SNPs) and shares features with a molecular attribute matrix (chemicals × attributes). LMF gives a unified low‐rank factorization of these three matrices, which allows for the decomposition of systematic variation that is shared and systematic variation that is specific to each matrix. This allows for efficient dimension reduction, exploratory visualization, and the imputation of missing data even when entire rows or columns are missing. We present theoretical results concerning the uniqueness, identifiability, and minimal parametrization of LMF, and evaluate it with extensive simulation studies.

Suggested Citation

  • Michael J. O'Connell & Eric F. Lock, 2019. "Linked matrix factorization," Biometrics, The International Biometric Society, vol. 75(2), pages 582-592, June.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:2:p:582-592
    DOI: 10.1111/biom.13010
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13010
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:2:p:582-592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.