IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i1p85-94.html
   My bibliography  Save this article

Detection of gene–gene interactions using multistage sparse and low-rank regression

Author

Listed:
  • Hung Hung
  • Yu-Ting Lin
  • Penweng Chen
  • Chen-Chien Wang
  • Su-Yun Huang
  • Jung-Ying Tzeng

Abstract

type="main" xml:lang="en"> Finding an efficient and computationally feasible approach to deal with the curse of high-dimensionality is a daunting challenge faced by modern biological science. The problem becomes even more severe when the interactions are the research focus. To improve the performance of statistical analyses, we propose a sparse and low-rank (SLR) screening based on the combination of a low-rank interaction model and the Lasso screening. SLR models the interaction effects using a low-rank matrix to achieve parsimonious parametrization. The low-rank model increases the efficiency of statistical inference and, hence, SLR screening is able to more accurately detect gene–gene interactions than conventional methods. Incorporation of SLR screening into the Screen-and-Clean approach (Wasserman and Roeder, 2009; Wu et al., 2010) is also discussed, which suffers less penalty from Boferroni correction, and is able to assign p-values for the identified variables in high-dimensional model. We apply the proposed screening procedure to the Warfarin dosage study and the CoLaus study. The results suggest that the new procedure can identify main and interaction effects that would have been omitted by conventional screening methods.

Suggested Citation

  • Hung Hung & Yu-Ting Lin & Penweng Chen & Chen-Chien Wang & Su-Yun Huang & Jung-Ying Tzeng, 2016. "Detection of gene–gene interactions using multistage sparse and low-rank regression," Biometrics, The International Biometric Society, vol. 72(1), pages 85-94, March.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:1:p:85-94
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:1:p:85-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.