IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i1p222-231.html
   My bibliography  Save this article

A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data

Author

Listed:
  • Lianming Wang
  • Christopher S. McMahan
  • Michael G. Hudgens
  • Zaina P. Qureshi

Abstract

type="main" xml:lang="en"> The proportional hazards model (PH) is currently the most popular regression model for analyzing time-to-event data. Despite its popularity, the analysis of interval-censored data under the PH model can be challenging using many available techniques. This article presents a new method for analyzing interval-censored data under the PH model. The proposed approach uses a monotone spline representation to approximate the unknown nondecreasing cumulative baseline hazard function. Formulating the PH model in this fashion results in a finite number of parameters to estimate while maintaining substantial modeling flexibility. A novel expectation-maximization (EM) algorithm is developed for finding the maximum likelihood estimates of the parameters. The derivation of the EM algorithm relies on a two-stage data augmentation involving latent Poisson random variables. The resulting algorithm is easy to implement, robust to initialization, enjoys quick convergence, and provides closed-form variance estimates. The performance of the proposed regression methodology is evaluated through a simulation study, and is further illustrated using data from a large population-based randomized trial designed and sponsored by the United States National Cancer Institute.

Suggested Citation

  • Lianming Wang & Christopher S. McMahan & Michael G. Hudgens & Zaina P. Qureshi, 2016. "A flexible, computationally efficient method for fitting the proportional hazards model to interval-censored data," Biometrics, The International Biometric Society, vol. 72(1), pages 222-231, March.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:1:p:222-231
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:1:p:222-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.