IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v72y2016i1p175-183.html
   My bibliography  Save this article

The cross-cut statistic and its sensitivity to bias in observational studies with ordered doses of treatment

Author

Listed:
  • Paul R. Rosenbaum

Abstract

type="main" xml:lang="en"> A common practice with ordered doses of treatment and ordered responses, perhaps recorded in a contingency table with ordered rows and columns, is to cut or remove a cross from the table, leaving the outer corners—that is, the high-versus-low dose, high-versus-low response corners—and from these corners to compute a risk or odds ratio. This little remarked but common practice seems to be motivated by the oldest and most familiar method of sensitivity analysis in observational studies, proposed by Cornfield et al. (1959), which says that to explain a population risk ratio purely as bias from an unobserved binary covariate, the prevalence ratio of the covariate must exceed the risk ratio. Quite often, the largest risk ratio, hence the one least sensitive to bias by this standard, is derived from the corners of the ordered table with the central cross removed. Obviously, the corners use only a portion of the data, so a focus on the corners has consequences for the standard error as well as for bias, but sampling variability was not a consideration in this early and familiar form of sensitivity analysis, where point estimates replaced population parameters. Here, this cross-cut analysis is examined with the aid of design sensitivity and the power of a sensitivity analysis.

Suggested Citation

  • Paul R. Rosenbaum, 2016. "The cross-cut statistic and its sensitivity to bias in observational studies with ordered doses of treatment," Biometrics, The International Biometric Society, vol. 72(1), pages 175-183, March.
  • Handle: RePEc:bla:biomet:v:72:y:2016:i:1:p:175-183
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul R. Rosenbaum & Dylan S. Small, 2017. "An adaptive Mantel–Haenszel test for sensitivity analysis in observational studies," Biometrics, The International Biometric Society, vol. 73(2), pages 422-430, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:72:y:2016:i:1:p:175-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.