Maximum likelihood estimation of semiparametric mixture component models for competing risks data
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yi-Hau Chen, 2009. "Weighted Breslow-type and maximum likelihood estimation in semiparametric transformation models," Biometrika, Biometrika Trust, vol. 96(3), pages 591-600.
- Sangbum Choi & Xuelin Huang, 2012. "A General Class of Semiparametric Transformation Frailty Models for Nonproportional Hazards Survival Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1126-1135, December.
- Yi‐Hau Chen, 2010. "Semiparametric marginal regression analysis for dependent competing risks under an assumed copula," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 235-251, March.
- Donglin Zeng & D. Y. Lin, 2006. "Efficient estimation of semiparametric transformation models for counting processes," Biometrika, Biometrika Trust, vol. 93(3), pages 627-640, September.
- John P. Klein & Per Kragh Andersen, 2005. "Regression Modeling of Competing Risks Data Based on Pseudovalues of the Cumulative Incidence Function," Biometrics, The International Biometric Society, vol. 61(1), pages 223-229, March.
- Per Kragh Andersen, 2003. "Generalised linear models for correlated pseudo-observations, with applications to multi-state models," Biometrika, Biometrika Trust, vol. 90(1), pages 15-27, March.
- I‐Shou Chang & Chao A. Hsiung & Chi‐Chung Wen & Yuh‐Jenn Wu & Che‐Chi Yang, 2007. "Non‐parametric Maximum‐Likelihood Estimation in a Semiparametric Mixture Model for Competing‐Risks Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(4), pages 870-895, December.
- Yingwei Peng & Keith B. G. Dear, 2000. "A Nonparametric Mixture Model for Cure Rate Estimation," Biometrics, The International Biometric Society, vol. 56(1), pages 237-243, March.
- Xuelin Huang & Nan Zhang, 2008. "Regression Survival Analysis with an Assumed Copula for Dependent Censoring: A Sensitivity Analysis Approach," Biometrics, The International Biometric Society, vol. 64(4), pages 1090-1099, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Pao-sheng Shen, 2022. "Nonparametric estimation for competing risks survival data subject to left truncation and interval censoring," Computational Statistics, Springer, vol. 37(1), pages 29-42, March.
- Chia-Hui Huang, 2019. "Mixture regression models for the gap time distributions and illness–death processes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 168-188, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chia-Hui Huang, 2019. "Mixture regression models for the gap time distributions and illness–death processes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 168-188, January.
- Deresa, Negera Wakgari & Van Keilegom, Ingrid, 2020. "A multivariate normal regression model for survival data subject to different types of dependent censoring," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Yi‐Hau Chen, 2010. "Semiparametric marginal regression analysis for dependent competing risks under an assumed copula," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 235-251, March.
- Wycinka Ewa, 2019. "Competing Risk Models of Default in the Presence of Early Repayments," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(2), pages 99-120, June.
- Sangbum Choi & Xuelin Huang, 2012. "A General Class of Semiparametric Transformation Frailty Models for Nonproportional Hazards Survival Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1126-1135, December.
- Qui Tran & Kelley M. Kidwell & Alex Tsodikov, 2018. "A joint model of cancer incidence, metastasis, and mortality," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(3), pages 385-406, July.
- Annalisa Orenti & Patrizia Boracchi & Giuseppe Marano & Elia Biganzoli & Federico Ambrogi, 2022. "A pseudo-values regression model for non-fatal event free survival in the presence of semi-competing risks," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 709-727, September.
- Chyong-Mei Chen & Pao-sheng Shen & Yi Liu, 2021. "On semiparametric transformation model with LTRC data: pseudo likelihood approach," Statistical Papers, Springer, vol. 62(1), pages 3-30, February.
- Erik T. Parner & Per K. Andersen & Morten Overgaard, 2020. "Cumulative risk regression in case–cohort studies using pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 639-658, October.
- Su, Pei-Fang & Chi, Yunchan & Li, Chung-I & Shyr, Yu & Liao, Yi-De, 2011. "Analyzing survival curves at a fixed point in time for paired and clustered right-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1617-1628, April.
- Lo, Simon M.S. & Wilke, Ralf A. & Emura, Takeshi, 2024. "A semiparametric model for the cause-specific hazard under risk proportionality," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
- Zijing Yang & Chengfeng Zhang & Yawen Hou & Zheng Chen, 2023. "Analysis of dynamic restricted mean survival time based on pseudo‐observations," Biometrics, The International Biometric Society, vol. 79(4), pages 3690-3700, December.
- M. A. Nicolaie & J. C. van Houwelingen & T. M. de Witte & H. Putter, 2013. "Dynamic Pseudo-Observations: A Robust Approach to Dynamic Prediction in Competing Risks," Biometrics, The International Biometric Society, vol. 69(4), pages 1043-1052, December.
- Deresa, N.W. & Van Keilegom, I. & Antonio, K., 2022. "Copula-based inference for bivariate survival data with left truncation and dependent censoring," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 1-21.
- Kim, Dongwoo, 2023. "Partially identifying competing risks models: An application to the war on cancer," Journal of Econometrics, Elsevier, vol. 234(2), pages 536-564.
- Xi Ning & Yinghao Pan & Yanqing Sun & Peter B. Gilbert, 2023. "A semiparametric Cox–Aalen transformation model with censored data," Biometrics, The International Biometric Society, vol. 79(4), pages 3111-3125, December.
- Chi-Chung Wen & Yi-Hau Chen, 2014. "Semiparametric analysis of incomplete current status outcome data under transformation models," Biometrics, The International Biometric Society, vol. 70(2), pages 335-345, June.
- Chyong-Mei Chen & Pao-Sheng Shen, 2018. "Conditional maximum likelihood estimation in semiparametric transformation model with LTRC data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 250-272, April.
- Brent R. Logan & John P. Klein & Mei‐Jie Zhang, 2008. "Comparing Treatments in the Presence of Crossing Survival Curves: An Application to Bone Marrow Transplantation," Biometrics, The International Biometric Society, vol. 64(3), pages 733-740, September.
- Klemen Pavlič & Torben Martinussen & Per Kragh Andersen, 2019. "Goodness of fit tests for estimating equations based on pseudo-observations," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 189-205, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:70:y:2014:i:3:p:588-598. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.