IDEAS home Printed from
   My bibliography  Save this article

Forecast Combination Across Estimation Windows


  • Pesaran, M. Hashem
  • Pick, Andreas


In this article we consider combining forecasts generated from the same model but over different estimation windows. We develop theoretical results for random walks with breaks in the drift and volatility and for a linear regression model with a break in the slope parameter. Averaging forecasts over different estimation windows leads to a lower bias and root mean square forecast error (RMSFE) compared with forecasts based on a single estimation window for all but the smallest breaks. An application to weekly returns on 20 equity index futures shows that averaging forecasts over estimation windows leads to a smaller RMSFE than some competing methods.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Pesaran, M. Hashem & Pick, Andreas, 2011. "Forecast Combination Across Estimation Windows," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 307-318.
  • Handle: RePEc:bes:jnlbes:v:29:i:2:y:2011:p:307-318

    Download full text from publisher

    File URL:
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Cragg, John G. & Donald, Stephen G., 1997. "Inferring the rank of a matrix," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 223-250.
    2. repec:cup:etheor:v:10:y:1994:i:2:p:233-53 is not listed on IDEAS
    3. Robin, Jean-Marc & Smith, Richard J., 2000. "Tests Of Rank," Econometric Theory, Cambridge University Press, vol. 16(02), pages 151-175, April.
    4. Li, Qi, et al, 2002. "Semiparametric Smooth Coefficient Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 412-422, July.
    5. James Banks & Richard Blundell & Arthur Lewbel, 1997. "Quadratic Engel Curves And Consumer Demand," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 527-539, November.
    6. Fortuna, Natercia, 2008. "Local rank tests in a multivariate nonparametric relationship," Journal of Econometrics, Elsevier, vol. 142(1), pages 162-182, January.
    7. Stephen G. Donald, 1997. "Inference Concerning the Number of Factors in a Multivariate Nonparametric Relationship," Econometrica, Econometric Society, vol. 65(1), pages 103-132, January.
    8. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(02), pages 222-240, April.
    9. repec:cup:etheor:v:9:y:1993:i:2:p:222-40 is not listed on IDEAS
    10. Newey, Whitney K., 1994. "Kernel Estimation of Partial Means and a General Variance Estimator," Econometric Theory, Cambridge University Press, vol. 10(02), pages 1-21, June.
    11. Christopher J. Nicol, 2001. "The rank and model specification of demand systems: an empirical analysis using United States microdata," Canadian Journal of Economics, Canadian Economics Association, vol. 34(1), pages 259-289, February.
    12. Lewbel, Arthur, 1991. "The Rank of Demand Systems: Theory and Nonparametric Estimation," Econometrica, Econometric Society, vol. 59(3), pages 711-730, May.
    13. Jianqing Fan, 2000. "Simultaneous Confidence Bands and Hypothesis Testing in Varying-coefficient Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(4), pages 715-731.
    14. Muellbauer, John, 1976. "Community Preferences and the Representative Consumer," Econometrica, Econometric Society, vol. 44(5), pages 979-999, September.
    15. John Muellbauer, 1975. "Aggregation, Income Distribution and Consumer Demand," Review of Economic Studies, Oxford University Press, vol. 42(4), pages 525-543.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:29:i:2:y:2011:p:307-318. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.