IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Modeling and Short-term Forecasting of New South Wales Electricity System Load

Listed author(s):
  • Smith, Michael

This article employs Bayesian semiparametric regression methodology to model intraday electricity load data and obtain short-term load forecasts. The role of such forecasts in the New South Wales wholesale electricity market is discussed and the method applied to New South Wales system load data. The semiparametric regression model used identifies daily periodic, weekly periodic, and temperature-sensitive components of load. Each component is decomposed as a linear combination of basis functions, with a nonzero probability mass that the corresponding coefficients are exactly zero. Three possible models for the errors are also considered, including independent, autoregressive, and first-differenced autoregressive models. A moving window of data is used to overcome the slow time-varying nature of the temperature and periodic effects. The entire model is estimated using a Bayesian Markov chain Monte Carlo approach, and forecasts are obtained using a Monte Carlo sample from the joint predictive distribution of future system load. It is demonstrated how accurate temperature forecasts can result in accurate intraday system load forecasts for even quite long forecast horizons.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Article provided by American Statistical Association in its journal Journal of Business and Economic Statistics.

Volume (Year): 18 (2000)
Issue (Month): 4 (October)
Pages: 465-478

as
in new window

Handle: RePEc:bes:jnlbes:v:18:y:2000:i:4:p:465-78
Contact details of provider: Web page: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main

Order Information: Web: http://www.amstat.org/publications/index.html

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:18:y:2000:i:4:p:465-78. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.