IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v96y2001mdecemberp1458-1468.html
   My bibliography  Save this article

Bayesian Semiparametric Median Regression Modeling

Author

Listed:
  • Kottas A.
  • Gelfand A.E.

Abstract

No abstract is available for this item.

Suggested Citation

  • Kottas A. & Gelfand A.E., 2001. "Bayesian Semiparametric Median Regression Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1458-1468, December.
  • Handle: RePEc:bes:jnlasa:v:96:y:2001:m:december:p:1458-1468
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2001/00000096/00000456/art00026
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamal Bouoiyour & Refk Selmi, 2017. "The Bitcoin price formation: Beyond the fundamental sources," Working Papers hal-01548710, HAL.
    2. Genya Kobayashi & Hideo Kozumi, 2012. "Bayesian analysis of quantile regression for censored dynamic panel data," Computational Statistics, Springer, vol. 27(2), pages 359-380, June.
    3. Yang, Mingan & Dunson, David B. & Baird, Donna, 2010. "Semiparametric Bayes hierarchical models with mean and variance constraints," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2172-2186, September.
    4. Xianhua Dai & Wolfgang Karl Härdle & Keming Yu, 2014. "Do Maternal Health Problems Influence Child's Worrying Status? Evidence from British Cohort Study," SFB 649 Discussion Papers SFB649DP2014-021, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    5. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    6. Haiming Zhou & Timothy Hanson & Jiajia Zhang, 0. "Generalized accelerated failure time spatial frailty model for arbitrarily censored data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 0, pages 1-21.
    7. Sugawara, Shinya, 2012. "A nonparametric Bayesian approach for counterfactual prediction with an application to the Japanese private nursing home market," MPRA Paper 42154, University Library of Munich, Germany.
    8. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    9. Tony Lancaster & Sung Jae Jun, 2010. "Bayesian quantile regression methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(2), pages 287-307.
    10. Xiangjin Shen & Shiliang Li & Hiroki Tsurumi, 2013. "Comparison of Parametric and Semi-Parametric Binary Response Models," Departmental Working Papers 201308, Rutgers University, Department of Economics.
    11. Pelenis, Justinas, 2014. "Bayesian regression with heteroscedastic error density and parametric mean function," Journal of Econometrics, Elsevier, vol. 178(P3), pages 624-638.
    12. Hideo Kozumi & Genya Kobayashi, 2009. "Gibbs Sampling Methods for Bayesian Quantile Regression," Discussion Papers 2009-02, Kobe University, Graduate School of Business Administration.
    13. Thompson, Paul & Cai, Yuzhi & Moyeed, Rana & Reeve, Dominic & Stander, Julian, 2010. "Bayesian nonparametric quantile regression using splines," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1138-1150, April.
    14. Debdeep Pati & David Dunson, 2014. "Bayesian nonparametric regression with varying residual density," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 1-31, February.
    15. repec:spr:lifeda:v:23:y:2017:i:3:d:10.1007_s10985-016-9361-4 is not listed on IDEAS
    16. Mauro Bernardi & Ghislaine Gayraud & Lea Petrella, 2013. "Bayesian inference for CoVaR," Papers 1306.2834, arXiv.org, revised Nov 2013.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:96:y:2001:m:december:p:1458-1468. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.