IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v106i495y2011p959-971.html
   My bibliography  Save this article

Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data

Author

Listed:
  • Faes, C.
  • Ormerod, J. T.
  • Wand, M. P.

Abstract

No abstract is available for this item.

Suggested Citation

  • Faes, C. & Ormerod, J. T. & Wand, M. P., 2011. "Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 959-971.
  • Handle: RePEc:bes:jnlasa:v:106:i:495:y:2011:p:959-971
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/jasa.2011.tm10301
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy Reese & Majid Mojirsheibani, 2017. "On the $$L_p$$ L p norms of kernel regression estimators for incomplete data with applications to classification," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 81-112, March.
    2. Badi H. Baltagi & Georges Bresson & Jean-Michel Etienne, 2020. "Growth Empirics: a Bayesian Semiparametric Model With Random Coefficients for a Panel of OECD Countries," Advances in Econometrics, in: Essays in Honor of Cheng Hsiao, volume 41, pages 217-253, Emerald Group Publishing Limited.
    3. Bresson Georges & Chaturvedi Anoop & Rahman Mohammad Arshad & Shalabh, 2021. "Seemingly unrelated regression with measurement error: estimation via Markov Chain Monte Carlo and mean field variational Bayes approximation," The International Journal of Biostatistics, De Gruyter, vol. 17(1), pages 75-97, May.
    4. Weixi Ren & Bo Yu & Yuren Chen & Kun Gao, 2022. "Divergent Effects of Factors on Crash Severity under Autonomous and Conventional Driving Modes Using a Hierarchical Bayesian Approach," IJERPH, MDPI, vol. 19(18), pages 1-22, September.
    5. Xiaoning Li & Mulati Tuerde & Xijian Hu, 2023. "Variational Bayesian Inference for Quantile Regression Models with Nonignorable Missing Data," Mathematics, MDPI, vol. 11(18), pages 1-31, September.
    6. Junxiang Zhang & Bo Yu & Yuren Chen & You Kong & Jianqiang Gao, 2022. "Comparative Analysis of Influencing Factors on Crash Severity between Super Multi-Lane and Traditional Multi-Lane Freeways Considering Spatial Heterogeneity," IJERPH, MDPI, vol. 19(19), pages 1-15, October.
    7. Youngseon Lee & Seongil Jo & Jaeyong Lee, 2022. "A variational inference for the Lévy adaptive regression with multiple kernels," Computational Statistics, Springer, vol. 37(5), pages 2493-2515, November.
    8. Luts, Jan & Ormerod, John T., 2014. "Mean field variational Bayesian inference for support vector machine classification," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 163-176.
    9. Ter Steege, Lucas, 2024. "Variational inference for Bayesian panel VAR models," Working Paper Series 2991, European Central Bank.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:106:i:495:y:2011:p:959-971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.