IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v105i491y2010p1265-1275.html
   My bibliography  Save this article

Using Calibration Weighting to Adjust for Nonignorable Unit Nonresponse

Author

Listed:
  • Kott, Phillip S.
  • Chang, Ted

Abstract

No abstract is available for this item.

Suggested Citation

  • Kott, Phillip S. & Chang, Ted, 2010. "Using Calibration Weighting to Adjust for Nonignorable Unit Nonresponse," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1265-1275.
  • Handle: RePEc:bes:jnlasa:v:105:i:491:y:2010:p:1265-1275
    as

    Download full text from publisher

    File URL: http://pubs.amstat.org/doi/abs/10.1198/jasa.2010.tm09016
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Chipperfield, 2022. "Survey Weighting after Imperfect Linkage to an Administrative File," International Statistical Review, International Statistical Institute, vol. 90(3), pages 419-436, December.
    2. Denis Devaud & Yves Tillé, 2019. "Deville and Särndal’s calibration: revisiting a 25-years-old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1033-1065, December.
    3. Rui Duan & C. Jason Liang & Pamela Shaw & Cheng Yong Tang & Yong Chen, 2020. "Missing at Random or Not: A Semiparametric Testing Approach," Papers 2003.11181, arXiv.org.
    4. Marcin Hitczenko, 2021. "Sample Bias Related to Household Role," FRB Atlanta Working Paper 2021-9, Federal Reserve Bank of Atlanta.
    5. María del Mar García Rueda & Pier Francesco Perri & Beatriz Rodríguez Cobo, 2018. "Advances in estimation by the item sum technique using auxiliary information in complex surveys," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 455-478, July.
    6. Giovanni D'Alessio & Andrea Neri, 2015. "Income and wealth sample estimates consistent with macro aggregates: some experiments," Questioni di Economia e Finanza (Occasional Papers) 272, Bank of Italy, Economic Research and International Relations Area.
    7. Laaksonen Seppo & Hämäläinen Auli, 2018. "Joint Response Propensity And Calibration Method," Statistics in Transition New Series, Polish Statistical Association, vol. 19(1), pages 45-60, March.
    8. Särndal Carl-Erik & Traat Imbi & Lumiste Kaur, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 183-200, June.
    9. Ao Huang & Kosuke Morikawa & Tim Friede & Satoshi Hattori, 2023. "Adjusting for publication bias in meta‐analysis via inverse probability weighting using clinical trial registries," Biometrics, The International Biometric Society, vol. 79(3), pages 2089-2102, September.
    10. Wang, Lei & Zhao, Puying & Shao, Jun, 2021. "Dimension-reduced semiparametric estimation of distribution functions and quantiles with nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    11. Sahar Z. Zangeneh & Roderick J. Little, 2022. "Likelihood‐Based Inference for the Finite Population Mean with Post‐Stratification Information Under Non‐Ignorable Non‐Response," International Statistical Review, International Statistical Institute, vol. 90(S1), pages 17-36, December.
    12. Yujing Shao & Lei Wang, 2022. "Generalized partial linear models with nonignorable dropouts," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 223-252, February.
    13. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    14. Hamori, Shigeyuki & Motegi, Kaiji & Zhang, Zheng, 2019. "Calibration estimation of semiparametric copula models with data missing at random," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 85-109.
    15. Kajal Dihidar, 2014. "Estimating population mean with missing data in unequal probability sampling," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(3), pages 369-388, June.
    16. M. Giovanna Ranalli & Alina Matei & Andrea Neri, 2023. "Generalised calibration with latent variables for the treatment of unit nonresponse in sample surveys," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 169-195, March.
    17. Szymkowiak Marcin & Wilak Kamil, 2021. "Repeated weighting in mixed-mode censuses," Economics and Business Review, Sciendo, vol. 7(1), pages 26-46, March.
    18. Kott Phillip S. & Liao Dan, 2018. "Calibration Weighting for Nonresponse with Proxy Frame Variables (So that Unit Nonresponse Can Be Not Missing at Random)," Journal of Official Statistics, Sciendo, vol. 34(1), pages 107-120, March.
    19. Jiwei Zhao & Jun Shao, 2015. "Semiparametric Pseudo-Likelihoods in Generalized Linear Models With Nonignorable Missing Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1577-1590, December.
    20. Carl-Erik Särndal & Imbi Traat & Kaur Lumiste, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 183-200, June.
    21. Ryo Kato & Takahiro Hoshino, 2020. "Semiparametric Bayesian Instrumental Variables Estimation for Nonignorable Missing Instruments," Discussion Paper Series DP2020-06, Research Institute for Economics & Business Administration, Kobe University.
    22. Pengfei Li & Jing Qin & Yukun Liu, 2023. "Instability of inverse probability weighting methods and a remedy for nonignorable missing data," Biometrics, The International Biometric Society, vol. 79(4), pages 3215-3226, December.
    23. Changbao Wu & Wilson W. Lu, 2016. "Calibration Weighting Methods for Complex Surveys," International Statistical Review, International Statistical Institute, vol. 84(1), pages 79-98, April.
    24. Guo, Xu & Song, Lianlian & Fang, Yun & Zhu, Lixing, 2019. "Model checking for general linear regression with nonignorable missing response," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 1-12.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:105:i:491:y:2010:p:1265-1275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.