IDEAS home Printed from https://ideas.repec.org/a/axf/icssaa/v1y2024i1p65-78.html
   My bibliography  Save this article

A Comprehensive Study of Feature Selection Techniques in Machine Learning Models

Author

Listed:
  • Cheng, Xueyi

Abstract

This paper explores the importance and applications of feature selection in machine learning models, with a focus on three main feature selection methods: filter methods, wrapper methods, and embedded methods. By comparing their advantages and limitations, the paper highlights how feature selection can improve model performance, reduce redundant features, minimize overfitting, and enhance computational efficiency. Additionally, the paper discusses the applications of feature selection across various domains, including healthcare, finance, and image processing, and examines how metrics such as accuracy, precision, and recall can assess the effectiveness of feature selection. As the complexity of datasets increases, the integration of feature selection with deep learning and explainable AI emerges as a key future direction, particularly in addressing scalability and fairness issues in large-scale and real-time applications. Finally, the paper concludes with an outlook on the future development and potential of feature selection in machine learning.

Suggested Citation

  • Cheng, Xueyi, 2024. "A Comprehensive Study of Feature Selection Techniques in Machine Learning Models," Artificial Intelligence and Digital Technology, Scientific Open Access Publishing, vol. 1(1), pages 65-78.
  • Handle: RePEc:axf:icssaa:v:1:y:2024:i:1:p:65-78
    as

    Download full text from publisher

    File URL: https://soapubs.com/index.php/ICSS/article/view/217/232
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:axf:icssaa:v:1:y:2024:i:1:p:65-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Yuchi Liu (email available below). General contact details of provider: https://soapubs.com/index.php/ICSS .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.