IDEAS home Printed from https://ideas.repec.org/a/arp/srarsr/2015p92-98.html
   My bibliography  Save this article

DC Conductivity of Composite Silicon Thin Films

Author

Listed:
  • Vladimir Tudic

    (Karlovac University of Applied Sciences /Department of Mechanical Engineering, Karlovac, Croatia)

  • Mario Marochini

    (Karlovac University of Applied Sciences /Department of Mechanical Engineering, Karlovac, Croatia)

Abstract

Amorphous-nano-crystalline silicon composite thin films (a-nc-Si:H) samples were synthesized by Plasma Enhanced Chemical Vapor Deposition technique. The measurement of DC conductivities was accomplished using Dielectric spectroscopy (Impedance Spectroscopy) in wide frequency and temperature range. In analysis of impedance data, two approaches were tested: the Debye type equivalent circuit with two parallel R and CPEs (constant phase elements) and modified one, with tree parallel R and CPEs including crystal grain boundary effects. It was found that the later better fits to experimental results properly describes crystal grains dielectric effect and hydrogen concentration indicating presence of strain. The amorphous matrix showed larger resistance and lower capacity than nano-crystal phase. Also it was found that composite silicon thin film cannot be properly described by equivalent circuit only with resistors and constant phase elements in serial relation.

Suggested Citation

  • Vladimir Tudic & Mario Marochini, 2015. "DC Conductivity of Composite Silicon Thin Films," Scientific Review, Academic Research Publishing Group, vol. 1(5), pages 92-98, 10-2015.
  • Handle: RePEc:arp:srarsr:2015:p:92-98
    DOI: arpgweb.com/?ic=journal&journal=10&info=aims
    as

    Download full text from publisher

    File URL: http://www.arpgweb.com/pdf-files/sr1(5)92-98.pdf
    Download Restriction: no

    File URL: http://www.arpgweb.com/?ic=journal&journal=10&month=10-2015&issue=5&volume=1
    Download Restriction: no

    File URL: https://libkey.io/arpgweb.com/?ic=journal&journal=10&info=aims?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arp:srarsr:2015:p:92-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Managing Editor (email available below). General contact details of provider: http://arpgweb.com/index.php?ic=journal&journal=10&info=aims .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.