IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Security Solutions for Privacy Preserving Improved Data Mining

Listed author(s):
  • Marian STOICA


  • Silvia TRIF


  • Adrian VISOIU


Registered author(s):

    Approaches of data analysis in the context of Business Intelligence solutions are presented, when the data is scarce with respect to the needs of performing an analysis. Several scenarios are presented: usage of an initial dataset obtained from primary data as a reference for the quality of the results, enriching the dataset through decoration with derived attributes and enriching the dataset with external data. Each type of dataset decoration is used to improve the quality of the analysis' results. After being subject to improvement using the presented methods, the improved dataset contains a large number of attributes regarding a subject. As some attributes refer to sensitive information or imply sensitive information about the subject, therefore dataset storage needs to prevent unwanted analysis that could reveal such information. A method for dataset partitioning is presented with respect to the predictive capacity of a set of attributes over a sensitive attribute. The proposed partitioning includes also means to hide the link between the real subject and stored data.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:,%20Trif,%20Visoiu.pdf
    Download Restriction: no

    Article provided by Academy of Economic Studies - Bucharest, Romania in its journal Informatica Economica.

    Volume (Year): 17 (2013)
    Issue (Month): 3 ()
    Pages: 157-168

    in new window

    Handle: RePEc:aes:infoec:v:17:y:2013:i:3:p:157-168
    Contact details of provider: Postal:

    Phone: 0040-01-2112650
    Fax: 0040-01-3129549
    Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:aes:infoec:v:17:y:2013:i:3:p:157-168. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Paul Pocatilu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.