IDEAS home Printed from https://ideas.repec.org/a/aea/aecrev/v107y2017i5p278-81.html

Estimating Average Treatment Effects: Supplementary Analyses and Remaining Challenges

Author

Listed:
  • Susan Athey
  • Guido Imbens
  • Thai Pham
  • Stefan Wager

Abstract

There is a large literature on semiparametric estimation of average treatment effects under unconfounded treatment assignment in settings with a fixed number of covariates. More recently attention has focused on settings with a large number of covariates. In this paper we extend lessons from the earlier literature to this new setting. We propose that in addition to reporting point estimates and standard errors, researchers report results from a number of supplementary analyses to assist in assessing the credibility of their estimates.

Suggested Citation

  • Susan Athey & Guido Imbens & Thai Pham & Stefan Wager, 2017. "Estimating Average Treatment Effects: Supplementary Analyses and Remaining Challenges," American Economic Review, American Economic Association, vol. 107(5), pages 278-281, May.
  • Handle: RePEc:aea:aecrev:v:107:y:2017:i:5:p:278-81
    Note: DOI: 10.1257/aer.p20171042
    as

    Download full text from publisher

    File URL: https://www.aeaweb.org/articles?id=10.1257/aer.p20171042
    Download Restriction: no

    File URL: https://www.aeaweb.org/articles/attachments?retrieve=wQTqHidJz8LAySJJ_YCLHQnsoVrAo7Sm
    Download Restriction: Access to full text is restricted to AEA members and institutional subscribers.
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aea:aecrev:v:107:y:2017:i:5:p:278-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael P. Albert (email available below). General contact details of provider: https://edirc.repec.org/data/aeaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.