IDEAS home Printed from
   My bibliography  Save this article

Looking for Efficient QML Estimation of Conditional VaRs at Multiple Risk Levels


  • Christian Francq
  • Jean-Michel Zakoïan


We consider joint estimation of conditional Value-at-Risk (VaR) at several levels - within the framework of general GARCH-type models. The conditional VaR at level a is expressed as the product of the volatility and the opposite of the ? -quantile of the innovation. A standard method is to estimate the volatility parameters by Gaussian Quasi-Maximum Likelihood (QML) in a first step, and to use the residuals for estimating the innovation's quantiles in a second step. We argue that the Gaussian QML may be inefficient with respect to more general QML and can even be in failure for heavy tailed conditional distributions. We therefore study - for a vector of risk levels - a two-step procedure based on a generalized QML. For a portfolio of VaRs at different levels, confidence intervals accounting for both market and estimation risks are deduced. An empirical study based on stock indices illustrates the theoretical results.

Suggested Citation

  • Christian Francq & Jean-Michel Zakoïan, 2016. "Looking for Efficient QML Estimation of Conditional VaRs at Multiple Risk Levels," Annals of Economics and Statistics, GENES, issue 123-124, pages 9-28.
  • Handle: RePEc:adr:anecst:y:2016:i:123-124:p:9-28
    DOI: 10.15609/annaeconstat2009.123-124.0009

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    More about this item


    Asymmetric Power GARCH; Distortion Risk Measures; Estimation Risk; Non-Gaussian Quasi-Maximum Likelihood; Value-at-Risk;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adr:anecst:y:2016:i:123-124:p:9-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General or Laurent Linnemer (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.