IDEAS home Printed from https://ideas.repec.org/a/aad/iseicj/v7y2019i0p933-937.html
   My bibliography  Save this article

Liquid Crystal Materials Orientation Using New Approach

Author

Listed:
  • Natalia Kamanina

    (Vavilov State Optical Institute, St. Petersburg, Russia; St.-Petersburg Electrotechnical University (“LETI”), St. Petersburg)

Abstract

It is well known that the liquid crystal (LC) mesophase is actively used in display technique and biomedicine devices. Unfortunately, the switching time of the devices based on the LCs is not fast enough; thus, it is very important to find novel perspective ways to obtain the good switching time of the LC dipoles used in these devices. Initial orientation of the LC molecules influences the dynamic parameters, for example, the switch-on and switch-off characteristics and the diffraction efficiency of the final devices. Among the different methods and approaches to find the optimized orientation of the inertial LC molecules a nanotechnology approach has shown the best results. This approach allows increasing the transparency, to decrease the resistivity and the number of the functional layers in the sandwich LC structures. Thus, it results in a decrease in the applied bias voltage. The effect is based on the fact that the ITO coating can be considered as the conducting layer and as the orienting (alignment) layer simultaneously. In the current paper, we continue our steps in the direction to find the best way of the LC molecules orientation. It is proposed to consider the LC media sensitization process as the method to change the surface relief when this relief is prepared from the polymeric orienting materials doped with the carbon nano-objects. Based on the solid fullerene-doped polyimide thin films and other organics it can be shown that the content of the fullerenes influences the wetting angle significantly. The fullerene concentration is correlated with the different surface relief view applied in the aligning of the LC molecules. The switching of the LC can be improved; furthermore the novel relief depended on the fullerene content can be used for the optical limiting of the laser irradiation.

Suggested Citation

  • Natalia Kamanina, 2019. "Liquid Crystal Materials Orientation Using New Approach," CBU International Conference Proceedings, ISE Research Institute, vol. 7(0), pages 933-937, September.
  • Handle: RePEc:aad:iseicj:v:7:y:2019:i:0:p:933-937
    DOI: 10.12955/cbup.v7.1478
    as

    Download full text from publisher

    File URL: https://ojs.journals.cz/index.php/CBUIC/article/view/1478/2004
    Download Restriction: no

    File URL: https://libkey.io/10.12955/cbup.v7.1478?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aad:iseicj:v:7:y:2019:i:0:p:933-937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Petr Hájek (email available below). General contact details of provider: https://ojs.journals.cz/index.php/CBUIC .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.