IDEAS home Printed from https://ideas.repec.org/r/inm/oropre/v17y1969i4p701-715.html
   My bibliography  Save this item

One-Machine Sequencing to Minimize Certain Functions of Job Tardiness

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. J. J. Kanet, 2007. "New Precedence Theorems for One-Machine Weighted Tardiness," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 579-588, August.
  2. Og[breve]uz, Ceyda & Sibel Salman, F. & Bilgintürk YalçIn, Zehra, 2010. "Order acceptance and scheduling decisions in make-to-order systems," International Journal of Production Economics, Elsevier, vol. 125(1), pages 200-211, May.
  3. Herr, Oliver & Goel, Asvin, 2016. "Minimising total tardiness for a single machine scheduling problem with family setups and resource constraints," European Journal of Operational Research, Elsevier, vol. 248(1), pages 123-135.
  4. Rostami, Salim & Creemers, Stefan & Leus, Roel, 2019. "Precedence theorems and dynamic programming for the single-machine weighted tardiness problem," European Journal of Operational Research, Elsevier, vol. 272(1), pages 43-49.
  5. Xin Chen & Malgorzata Sterna & Xin Han & Jacek Blazewicz, 2016. "Scheduling on parallel identical machines with late work criterion: Offline and online cases," Journal of Scheduling, Springer, vol. 19(6), pages 729-736, December.
  6. Koulamas, Christos, 2010. "The single-machine total tardiness scheduling problem: Review and extensions," European Journal of Operational Research, Elsevier, vol. 202(1), pages 1-7, April.
  7. Tanaka, Shunji & Araki, Mituhiko, 2008. "A branch-and-bound algorithm with Lagrangian relaxation to minimize total tardiness on identical parallel machines," International Journal of Production Economics, Elsevier, vol. 113(1), pages 446-458, May.
  8. Jouglet, Antoine & Carlier, Jacques, 2011. "Dominance rules in combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 212(3), pages 433-444, August.
  9. John J. Kanet, 2014. "One-Machine Sequencing to Minimize Total Tardiness: A Fourth Theorem for Emmons," Operations Research, INFORMS, vol. 62(2), pages 345-347, April.
  10. S H Yoon & I S Lee, 2011. "New constructive heuristics for the total weighted tardiness problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 232-237, January.
  11. Louis-Philippe Bigras & Michel Gamache & Gilles Savard, 2008. "Time-Indexed Formulations and the Total Weighted Tardiness Problem," INFORMS Journal on Computing, INFORMS, vol. 20(1), pages 133-142, February.
  12. Tanaka, Shunji & Sato, Shun, 2013. "An exact algorithm for the precedence-constrained single-machine scheduling problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 345-352.
  13. Chengbin Chu, 1992. "A branch‐and‐bound algorithm to minimize total tardiness with different release dates," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(2), pages 265-283, March.
  14. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.
  15. Biskup, Dirk & Piewitt, Wolfgang, 2000. "A note on An efficient algorithm for the single-machine tardiness problem," International Journal of Production Economics, Elsevier, vol. 66(3), pages 287-292, July.
  16. Koulamas, Christos & Kyparisis, George J., 2001. "Single machine scheduling with release times, deadlines and tardiness objectives," European Journal of Operational Research, Elsevier, vol. 133(2), pages 447-453, January.
  17. Koulamas, Christos, 1996. "Single-machine scheduling with time windows and earliness/tardiness penalties," European Journal of Operational Research, Elsevier, vol. 91(1), pages 190-202, May.
  18. Xiao, Qian & Xu, Hongquan, 2021. "A mapping-based universal Kriging model for order-of-addition experiments in drug combination studies," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
  19. Baptiste, Philippe & Carlier, Jacques & Jouglet, Antoine, 2004. "A Branch-and-Bound procedure to minimize total tardiness on one machine with arbitrary release dates," European Journal of Operational Research, Elsevier, vol. 158(3), pages 595-608, November.
  20. El-Bouri, Ahmed & Balakrishnan, Subramaniam & Popplewell, Neil, 2000. "Sequencing jobs on a single machine: A neural network approach," European Journal of Operational Research, Elsevier, vol. 126(3), pages 474-490, November.
  21. Su, Ling-Huey & Chen, Chung-Jung, 2008. "Minimizing total tardiness on a single machine with unequal release dates," European Journal of Operational Research, Elsevier, vol. 186(2), pages 496-503, April.
  22. Haiyan Wang & Chung‐Yee Lee, 2005. "Production and transport logistics scheduling with two transport mode choices," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(8), pages 796-809, December.
  23. Rubing Chen & Jinjiang Yuan, 2019. "Unary NP-hardness of single-machine scheduling to minimize the total tardiness with deadlines," Journal of Scheduling, Springer, vol. 22(5), pages 595-601, October.
  24. S.S. Panwalkar & Christos Koulamas, 2015. "Scheduling research and the first decade of NRLQ: A historical perspective," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(4), pages 335-344, June.
  25. Somaye Geramipour & Ghasem Moslehi & Mohammad Reisi-Nafchi, 2017. "Maximizing the profit in customer’s order acceptance and scheduling problem with weighted tardiness penalty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 89-101, January.
  26. Naidu, Jaideep T., 2003. "A note on a well-known dispatching rule to minimize total tardiness," Omega, Elsevier, vol. 31(2), pages 137-140, April.
  27. Philippe Baptiste & Ruslan Sadykov, 2009. "On scheduling a single machine to minimize a piecewise linear objective function: A compact MIP formulation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 487-502, September.
  28. Russell, Randolph M. & Holsenback, J. Edward, 1997. "Evaluation of leading heuristics for the single machine tardiness problem," European Journal of Operational Research, Elsevier, vol. 96(3), pages 538-545, February.
  29. S-O Shim & Y-D Kim, 2007. "Minimizing total tardiness in an unrelated parallel-machine scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 346-354, March.
  30. Sen, Tapan & Sulek, Joanne M. & Dileepan, Parthasarati, 2003. "Static scheduling research to minimize weighted and unweighted tardiness: A state-of-the-art survey," International Journal of Production Economics, Elsevier, vol. 83(1), pages 1-12, January.
  31. Koulamas, C., 1997. "Polynomially solvable total tardiness problems: Review and extensions," Omega, Elsevier, vol. 25(2), pages 235-239, April.
  32. Tian, Z. J. & Ng, C. T. & Cheng, T. C. E., 2005. "On the single machine total tardiness problem," European Journal of Operational Research, Elsevier, vol. 165(3), pages 843-846, September.
  33. Akturk, M. Selim & Ozdemir, Deniz, 2001. "A new dominance rule to minimize total weighted tardiness with unequal release dates," European Journal of Operational Research, Elsevier, vol. 135(2), pages 394-412, December.
  34. Liu, Zhixin & Lu, Liang & Qi, Xiangtong, 2020. "Price quotation for orders with different due dates," International Journal of Production Economics, Elsevier, vol. 220(C).
  35. Elmaghraby, Salah E., 2001. "On the optimal release time of jobs with random processing times, with extensions to other criteria," International Journal of Production Economics, Elsevier, vol. 74(1-3), pages 103-113, December.
  36. Ben-Daya, M. & Al-Fawzan, M., 1996. "A simulated annealing approach for the one-machine mean tardiness scheduling problem," European Journal of Operational Research, Elsevier, vol. 93(1), pages 61-67, August.
  37. Koulamas, Christos, 2020. "The proportionate flow shop total tardiness problem," European Journal of Operational Research, Elsevier, vol. 284(2), pages 439-444.
  38. Tan, Keah-Choon & Narasimhan, Ram & Rubin, Paul A. & Ragatz, Gary L., 2000. "A comparison of four methods for minimizing total tardiness on a single processor with sequence dependent setup times," Omega, Elsevier, vol. 28(3), pages 313-326, June.
  39. Silva, Marco & Poss, Michael & Maculan, Nelson, 2020. "Solution algorithms for minimizing the total tardiness with budgeted processing time uncertainty," European Journal of Operational Research, Elsevier, vol. 283(1), pages 70-82.
  40. Koulamas, Christos & Kyparisis, George J., 2019. "New results for single-machine scheduling with past-sequence-dependent setup times and due date-related objectives," European Journal of Operational Research, Elsevier, vol. 278(1), pages 149-159.
  41. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
  42. John J. Kanet & Federico Della Croce & Christos Koulamas & Vincent T’kindt, 2015. "Erratum—One Machine Sequencing to Minimize Total Tardiness: A Fourth Theorem for Emmons," Operations Research, INFORMS, vol. 63(2), pages 351-352, April.
  43. Tan, K. C. & Narasimhan, R., 1997. "Minimizing tardiness on a single processor with sequence-dependent setup times: a simulated annealing approach," Omega, Elsevier, vol. 25(6), pages 619-634, December.
  44. Yin, Yunqiang & Cheng, T.C.E. & Wang, Du-Juan, 2016. "Rescheduling on identical parallel machines with machine disruptions to minimize total completion time," European Journal of Operational Research, Elsevier, vol. 252(3), pages 737-749.
  45. Schaller, Jeffrey, 2007. "Scheduling on a single machine with family setups to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 105(2), pages 329-344, February.
  46. Szwarc, Wlodzimierz, 2007. "Some remarks on the decomposition properties of the single machine total tardiness problem," European Journal of Operational Research, Elsevier, vol. 177(1), pages 623-625, February.
  47. Lee, Ik Sun, 2013. "Minimizing total tardiness for the order scheduling problem," International Journal of Production Economics, Elsevier, vol. 144(1), pages 128-134.
  48. Roberto Cordone & Pierre Hosteins & Giovanni Righini, 2018. "A Branch-and-Bound Algorithm for the Prize-Collecting Single-Machine Scheduling Problem with Deadlines and Total Tardiness Minimization," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 168-180, February.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.