IDEAS home Printed from https://ideas.repec.org/r/gam/jeners/v13y2020i18p4964-d417269.html
   My bibliography  Save this item

A Novel Deep Learning Approach for Wind Power Forecasting Based on WD-LSTM Model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Paweł Piotrowski & Dariusz Baczyński & Marcin Kopyt & Tomasz Gulczyński, 2022. "Advanced Ensemble Methods Using Machine Learning and Deep Learning for One-Day-Ahead Forecasts of Electric Energy Production in Wind Farms," Energies, MDPI, vol. 15(4), pages 1-30, February.
  2. Zhang, Dongdong & Chen, Baian & Zhu, Hongyu & Goh, Hui Hwang & Dong, Yunxuan & Wu, Thomas, 2023. "Short-term wind power prediction based on two-layer decomposition and BiTCN-BiLSTM-attention model," Energy, Elsevier, vol. 285(C).
  3. Jingtao Huang & Gang Niu & Haiping Guan & Shuzhong Song, 2023. "Ultra-Short-Term Wind Power Prediction Based on LSTM with Loss Shrinkage Adam," Energies, MDPI, vol. 16(9), pages 1-13, April.
  4. Huang, Yu & Zhang, Bingzhe & Pang, Huizhen & Wang, Biao & Lee, Kwang Y. & Xie, Jiale & Jin, Yupeng, 2022. "Spatio-temporal wind speed prediction based on Clayton Copula function with deep learning fusion," Renewable Energy, Elsevier, vol. 192(C), pages 526-536.
  5. Alabi, Tobi Michael & Aghimien, Emmanuel I. & Agbajor, Favour D. & Yang, Zaiyue & Lu, Lin & Adeoye, Adebusola R. & Gopaluni, Bhushan, 2022. "A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems," Renewable Energy, Elsevier, vol. 194(C), pages 822-849.
  6. Hua Li & Zhen Wang & Binbin Shan & Lingling Li, 2022. "Research on Multi-Step Prediction of Short-Term Wind Power Based on Combination Model and Error Correction," Energies, MDPI, vol. 15(22), pages 1-21, November.
  7. Bilal, Boudy & Adjallah, Kondo Hloindo & Sava, Alexandre & Yetilmezsoy, Kaan & Kıyan, Emel, 2022. "Wind power conversion system model identification using adaptive neuro-fuzzy inference systems: A case study," Energy, Elsevier, vol. 239(PB).
  8. Zhong, Lingshu & Wu, Pan & Pei, Mingyang, 2024. "Wind power generation prediction during the COVID-19 epidemic based on novel hybrid deep learning techniques," Renewable Energy, Elsevier, vol. 222(C).
  9. Zhou, Gaoyu & Hu, Guofeng & Zhang, Daxing & Zhang, Yun, 2023. "A novel algorithm system for wind power prediction based on RANSAC data screening and Seq2Seq-Attention-BiGRU model," Energy, Elsevier, vol. 283(C).
  10. Zheng, Weimin & Huang, Liyao & Lin, Zhibin, 2021. "Multi-attraction, hourly tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 90(C).
  11. Qu, Zhijian & Li, Jian & Hou, Xinxing & Gui, Jianglin, 2023. "A D-stacking dual-fusion, spatio-temporal graph deep neural network based on a multi-integrated overlay for short-term wind-farm cluster power multi-step prediction," Energy, Elsevier, vol. 281(C).
  12. Paweł Piotrowski & Inajara Rutyna & Dariusz Baczyński & Marcin Kopyt, 2022. "Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and Statistical Analysis of Errors," Energies, MDPI, vol. 15(24), pages 1-38, December.
  13. Lasantha Meegahapola & Siqi Bu, 2021. "Special Issue: “Wind Power Integration into Power Systems: Stability and Control Aspects”," Energies, MDPI, vol. 14(12), pages 1-4, June.
  14. Wang, Lei & He, Yigang, 2022. "M2STAN: Multi-modal multi-task spatiotemporal attention network for multi-location ultra-short-term wind power multi-step predictions," Applied Energy, Elsevier, vol. 324(C).
  15. Wen, Songkang & Li, Yanting & Su, Yan, 2022. "A new hybrid model for power forecasting of a wind farm using spatial–temporal correlations," Renewable Energy, Elsevier, vol. 198(C), pages 155-168.
  16. Wang, Fei & Chen, Peng & Zhen, Zhao & Yin, Rui & Cao, Chunmei & Zhang, Yagang & Duić, Neven, 2022. "Dynamic spatio-temporal correlation and hierarchical directed graph structure based ultra-short-term wind farm cluster power forecasting method," Applied Energy, Elsevier, vol. 323(C).
  17. Tiago Pinto, 2023. "Artificial Intelligence as a Booster of Future Power Systems," Energies, MDPI, vol. 16(5), pages 1-4, February.
  18. Yun, Eunjeong & Hur, Jin, 2021. "Probabilistic estimation model of power curve to enhance power output forecasting of wind generating resources," Energy, Elsevier, vol. 223(C).
  19. Navarkar, Abhishek & Hasti, Veeraraghava Raju & Deneke, Elihu & Gore, Jay P., 2020. "A data-driven model for thermodynamic properties of a steam generator under cycling operation," Energy, Elsevier, vol. 211(C).
  20. Wei, Danxiang & Wang, Jianzhou & Niu, Xinsong & Li, Zhiwu, 2021. "Wind speed forecasting system based on gated recurrent units and convolutional spiking neural networks," Applied Energy, Elsevier, vol. 292(C).
  21. Kui Yang & Bofu Wang & Xiang Qiu & Jiahua Li & Yuze Wang & Yulu Liu, 2022. "Multi-Step Short-Term Wind Speed Prediction Models Based on Adaptive Robust Decomposition Coupled with Deep Gated Recurrent Unit," Energies, MDPI, vol. 15(12), pages 1-24, June.
  22. Ye, Lin & Li, Yilin & Pei, Ming & Zhao, Yongning & Li, Zhuo & Lu, Peng, 2022. "A novel integrated method for short-term wind power forecasting based on fluctuation clustering and history matching," Applied Energy, Elsevier, vol. 327(C).
  23. Qiuhong Huang & Xiao Wang, 2022. "A Forecasting Model of Wind Power Based on IPSO–LSTM and Classified Fusion," Energies, MDPI, vol. 15(15), pages 1-19, July.
  24. Farah, Shahid & David A, Wood & Humaira, Nisar & Aneela, Zameer & Steffen, Eger, 2022. "Short-term multi-hour ahead country-wide wind power prediction for Germany using gated recurrent unit deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
  25. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2023. "Wind power forecasting: A hybrid forecasting model and multi-task learning-based framework," Energy, Elsevier, vol. 278(PA).
  26. Li, Guannan & Li, Fan & Ahmad, Tanveer & Liu, Jiangyan & Li, Tao & Fang, Xi & Wu, Yubei, 2022. "Performance evaluation of sequence-to-sequence-Attention model for short-term multi-step ahead building energy predictions," Energy, Elsevier, vol. 259(C).
  27. Manisha Sawant & Rupali Patil & Tanmay Shikhare & Shreyas Nagle & Sakshi Chavan & Shivang Negi & Neeraj Dhanraj Bokde, 2022. "A Selective Review on Recent Advancements in Long, Short and Ultra-Short-Term Wind Power Prediction," Energies, MDPI, vol. 15(21), pages 1-24, October.
  28. Xiao, Yulong & Zou, Chongzhe & Chi, Hetian & Fang, Rengcun, 2023. "Boosted GRU model for short-term forecasting of wind power with feature-weighted principal component analysis," Energy, Elsevier, vol. 267(C).
  29. Suo Li & Ling-ling Huang & Yang Liu & Meng-yao Zhang, 2021. "Modeling of Ultra-Short Term Offshore Wind Power Prediction Based on Condition-Assessment of Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-16, February.
  30. Zhang, Mingyang & Zhou, Ming & Wu, Zhaoyuan & Yang, Hongji & Li, Gengyin, 2022. "A ramp capability-aware scheduling strategy for integrated electricity-gas systems," Energy, Elsevier, vol. 241(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.