IDEAS home Printed from https://ideas.repec.org/r/eee/transb/v23y1989i3p159-175.html
   My bibliography  Save this item

The crane scheduling problem

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bierwirth, Christian & Meisel, Frank, 2010. "A survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 202(3), pages 615-627, May.
  2. Vibhuti Dhingra & Debjit Roy & René B. M. Koster, 2017. "A cooperative quay crane-based stochastic model to estimate vessel handling time," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 97-124, March.
  3. Chen, Jiang Hang & Lee, Der-Horng & Goh, Mark, 2014. "An effective mathematical formulation for the unidirectional cluster-based quay crane scheduling problem," European Journal of Operational Research, Elsevier, vol. 232(1), pages 198-208.
  4. Shawn Choo & Diego Klabjan & David Simchi-Levi, 2010. "Multiship Crane Sequencing with Yard Congestion Constraints," Transportation Science, INFORMS, vol. 44(1), pages 98-115, February.
  5. Jiyin Liu & Yat‐wah Wan & Lei Wang, 2006. "Quay crane scheduling at container terminals to minimize the maximum relative tardiness of vessel departures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(1), pages 60-74, February.
  6. Yongpei Guan & Kang-Hung Yang & Zhili Zhou, 2013. "The crane scheduling problem: models and solution approaches," Annals of Operations Research, Springer, vol. 203(1), pages 119-139, March.
  7. Frank Meisel, 2011. "The quay crane scheduling problem with time windows," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(7), pages 619-636, October.
  8. Dirk Briskorn & Lennart Zey, 2018. "Resolving interferences of triple‐crossover‐cranes by determining paths in networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(6-7), pages 477-498, September.
  9. Y Zhu & A Lim, 2006. "Crane scheduling with non-crossing constraint," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(12), pages 1464-1471, December.
  10. Wu, Lingxiao & Ma, Weimin, 2017. "Quay crane scheduling with draft and trim constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 38-68.
  11. Yanling Chu & Xiaoju Zhang & Zhongzhen Yang, 2017. "Multiple quay cranes scheduling for double cycling in container terminals," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
  12. Briskorn, Dirk & Drexl, Andreas & Hartmann, Sönke, 2005. "Inventory based dispatching of automated guided vehicles on container terminals," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 596, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  13. Zhang, Chuqian & Wan, Yat-wah & Liu, Jiyin & Linn, Richard J., 2002. "Dynamic crane deployment in container storage yards," Transportation Research Part B: Methodological, Elsevier, vol. 36(6), pages 537-555, July.
  14. Zeng, Qingcheng & Yang, Zhongzhen & Lai, Luyuan, 2009. "Models and algorithms for multi-crane oriented scheduling method in container terminals," Transport Policy, Elsevier, vol. 16(5), pages 271-278, September.
  15. Zhang, Xiaoju & Zeng, Qingcheng & Sheu, Jiuh-Biing, 2019. "Modeling the productivity and stability of a terminal operation system with quay crane double cycling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 181-197.
  16. Abdellah Salhi & Ghazwan Alsoufi & Xinan Yang, 2019. "An evolutionary approach to a combined mixed integer programming model of seaside operations as arise in container ports," Annals of Operations Research, Springer, vol. 272(1), pages 69-98, January.
  17. Shoufeng Ma & Hongming Li & Ning Zhu & Chenyi Fu, 2021. "Stochastic programming approach for unidirectional quay crane scheduling problem with uncertainty," Journal of Scheduling, Springer, vol. 24(2), pages 137-174, April.
  18. Nabil Nehme & Bacel Maddah & Isam A. Kaysi, 2021. "An integrated multi-ship crane allocation in Beirut Port container terminal," Operational Research, Springer, vol. 21(3), pages 1743-1761, September.
  19. Frank Meisel & Christian Bierwirth, 2013. "A Framework for Integrated Berth Allocation and Crane Operations Planning in Seaport Container Terminals," Transportation Science, INFORMS, vol. 47(2), pages 131-147, May.
  20. Andrew Lim & Brian Rodrigues & Zhou Xu, 2007. "A m‐parallel crane scheduling problem with a non‐crossing constraint," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(2), pages 115-127, March.
  21. Raymond K. Cheung & Chung-Lun Li & Wuqin Lin, 2002. "Interblock Crane Deployment in Container Terminals," Transportation Science, INFORMS, vol. 36(1), pages 79-93, February.
  22. Kaveshgar, Narges & Huynh, Nathan, 2015. "Integrated quay crane and yard truck scheduling for unloading inbound containers," International Journal of Production Economics, Elsevier, vol. 159(C), pages 168-177.
  23. Rodrigues, Filipe & Agra, Agostinho, 2022. "Berth allocation and quay crane assignment/scheduling problem under uncertainty: A survey," European Journal of Operational Research, Elsevier, vol. 303(2), pages 501-524.
  24. Andrew Lim & Brian Rodrigues & Fei Xiao & Yi Zhu, 2004. "Crane scheduling with spatial constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(3), pages 386-406, April.
  25. David Füßler & Stefan Fedtke & Nils Boysen, 2019. "The cafeteria problem: order sequencing and picker routing in on-the-line picking systems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 727-756, September.
  26. T. R. Lalita & G. S. R. Murthy, 2022. "Compact ILP formulations for a class of solutions to berth allocation and quay crane scheduling problems," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 413-439, March.
  27. Türkoğulları, Yavuz B. & Taşkın, Z. Caner & Aras, Necati & Altınel, İ. Kuban, 2014. "Optimal berth allocation and time-invariant quay crane assignment in container terminals," European Journal of Operational Research, Elsevier, vol. 235(1), pages 88-101.
  28. Branislav Dragović & Nam Kyu Park & Zoran Radmilović, 2006. "Ship-berth link performance evaluation: simulation and analytical approaches," Maritime Policy & Management, Taylor & Francis Journals, vol. 33(3), pages 281-299, July.
  29. Nils Boysen & Malte Fliedner & Florian Jaehn & Erwin Pesch, 2013. "A Survey on Container Processing in Railway Yards," Transportation Science, INFORMS, vol. 47(3), pages 312-329, August.
  30. Kim, Kap Hwan & Moon, Kyung Chan, 2003. "Berth scheduling by simulated annealing," Transportation Research Part B: Methodological, Elsevier, vol. 37(6), pages 541-560, July.
  31. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
  32. Vis, Iris F. A. & de Koster, Rene, 2003. "Transshipment of containers at a container terminal: An overview," European Journal of Operational Research, Elsevier, vol. 147(1), pages 1-16, May.
  33. Bierwirth, Christian & Meisel, Frank, 2015. "A follow-up survey of berth allocation and quay crane scheduling problems in container terminals," European Journal of Operational Research, Elsevier, vol. 244(3), pages 675-689.
  34. Ahmadian, Mohammad Mahdi & Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2021. "Four decades of research on the open-shop scheduling problem to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 295(2), pages 399-426.
  35. Hongming Li & Xintao Li, 2022. "A Branch-and-Bound Algorithm for the Bi-Objective Quay Crane Scheduling Problem Based on Efficiency and Energy," Mathematics, MDPI, vol. 10(24), pages 1-20, December.
  36. Kong, Lingrui & Ji, Mingjun & Gao, Zhendi, 2022. "An exact algorithm for scheduling tandem quay crane operations in container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
  37. John J. Bartholdi & Alvaro Lasso & H. Donald Ratliff & Yuritza Oliver, 2019. "Using GPS to measure truck service times in a container terminal," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(1), pages 146-155, March.
  38. Ebru K. Bish & Thin‐Yin Leong & Chung‐Lun Li & Jonathan W. C. Ng & David Simchi‐Levi, 2001. "Analysis of a new vehicle scheduling and location problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(5), pages 363-385, August.
  39. Qin, Tianbao & Du, Yuquan & Chen, Jiang Hang & Sha, Mei, 2020. "Combining mixed integer programming and constraint programming to solve the integrated scheduling problem of container handling operations of a single vessel," European Journal of Operational Research, Elsevier, vol. 285(3), pages 884-901.
  40. Abou Kasm, Omar & Diabat, Ali & Chow, Joseph Y.J., 2023. "Simultaneous operation of next-generation and traditional quay cranes at container terminals," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1110-1125.
  41. Amir Hossein Gharehgozli & Gilbert Laporte & Yugang Yu & René de Koster, 2015. "Scheduling Twin Yard Cranes in a Container Block," Transportation Science, INFORMS, vol. 49(3), pages 686-705, August.
  42. Evrim Ursavas, 2017. "Crane allocation with stability considerations," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(2), pages 379-401, June.
  43. Sun, Defeng & Tang, Lixin & Baldacci, Roberto, 2019. "A Benders decomposition-based framework for solving quay crane scheduling problems," European Journal of Operational Research, Elsevier, vol. 273(2), pages 504-515.
  44. Dirk Briskorn & Florian Jaehn & Andreas Wiehl, 2019. "A generator for test instances of scheduling problems concerning cranes in transshipment terminals," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 45-69, March.
  45. J Blazewicz & T C E Cheng & M Machowiak & C Oguz, 2011. "Berth and quay crane allocation: a moldable task scheduling model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(7), pages 1189-1197, July.
  46. Tang, Lixin & Zhao, Jiao & Liu, Jiyin, 2014. "Modeling and solution of the joint quay crane and truck scheduling problem," European Journal of Operational Research, Elsevier, vol. 236(3), pages 978-990.
  47. Shucheng Yu & Shuaian Wang & Lu Zhen, 2017. "Quay crane scheduling problem with considering tidal impact and fuel consumption," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 345-368, December.
  48. Cullinane, Kevin & Wang, Teng-Fei & Song, Dong-Wook & Ji, Ping, 2006. "The technical efficiency of container ports: Comparing data envelopment analysis and stochastic frontier analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(4), pages 354-374, May.
  49. Ng, W. C., 2005. "Crane scheduling in container yards with inter-crane interference," European Journal of Operational Research, Elsevier, vol. 164(1), pages 64-78, July.
  50. Kim, Kap Hwan & Park, Young-Man, 2004. "A crane scheduling method for port container terminals," European Journal of Operational Research, Elsevier, vol. 156(3), pages 752-768, August.
  51. Dhirendra Prajapati & Yash Daultani & Naoufel Cheikhrouhou & Saurabh Pratap, 2020. "Identification and ranking of key factors impacting efficiency of Indian shipping logistics sector," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 765-786, September.
  52. Bish, Ebru K., 2003. "A multiple-crane-constrained scheduling problem in a container terminal," European Journal of Operational Research, Elsevier, vol. 144(1), pages 83-107, January.
  53. Unsal, Ozgur & Oguz, Ceyda, 2013. "Constraint programming approach to quay crane scheduling problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 59(C), pages 108-122.
  54. Silva, Marcos de Melo da & Erdoğan, Güneş & Battarra, Maria & Strusevich, Vitaly, 2018. "The Block Retrieval Problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 931-950.
  55. Sun, Defeng & Tang, Lixin & Baldacci, Roberto & Lim, Andrew, 2021. "An exact algorithm for the unidirectional quay crane scheduling problem with vessel stability," European Journal of Operational Research, Elsevier, vol. 291(1), pages 271-283.
  56. Hartmann, Sönke, 2002. "A general framework for scheduling equipment and manpower on container terminals," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 566, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  57. Henry Lau & Ying Zhao, 2008. "Integrated scheduling of handling equipment at automated container terminals," Annals of Operations Research, Springer, vol. 159(1), pages 373-394, March.
  58. Kap Hwan Kim & Ki Young Kim, 1999. "An Optimal Routing Algorithm for a Transfer Crane in Port Container Terminals," Transportation Science, INFORMS, vol. 33(1), pages 17-33, February.
  59. Lu Zhen & Shucheng Yu & Shuaian Wang & Zhuo Sun, 2019. "Scheduling quay cranes and yard trucks for unloading operations in container ports," Annals of Operations Research, Springer, vol. 273(1), pages 455-478, February.
  60. Hellsten, Erik Orm & Sacramento, David & Pisinger, David, 2020. "An adaptive large neighbourhood search heuristic for routing and scheduling feeder vessels in multi-terminal ports," European Journal of Operational Research, Elsevier, vol. 287(2), pages 682-698.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.