IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v76y2017icp448-459.html
   My bibliography  Save this item

The decomposition of CO2 emissions from energy use in Greece before and during the economic crisis and their decoupling from economic growth

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Long Li & Yinting Li, 2022. "The Spatial Relationship between CO 2 Emissions and Economic Growth in the Construction Industry: Based on the Tapio Decoupling Model and STIRPAT Model," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
  2. Zhen Yang & Weijun Gao & Jiawei Li, 2022. "Can Economic Growth and Environmental Protection Achieve a “Win–Win” Situation? Empirical Evidence from China," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
  3. Michael L. Polemis & Panagiotis Fotis & Panayiotis G. Tzeremes & Nickolaos G. Tzeremes, 2022. "On the examination of the decoupling effect of air pollutants from economic growth: a convergence analysis for the US," Letters in Spatial and Resource Sciences, Springer, vol. 15(3), pages 691-707, December.
  4. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
  5. Jingxing Liu & Hailing Li & Tianqi Liu, 2022. "Decoupling Regional Economic Growth from Industrial CO 2 Emissions: Empirical Evidence from the 13 Prefecture-Level Cities in Jiangsu Province," Sustainability, MDPI, vol. 14(5), pages 1-20, February.
  6. Zhang, Xi & Geng, Yong & Shao, Shuai & Dong, Huijuan & Wu, Rui & Yao, Tianli & Song, Jiekun, 2020. "How to achieve China’s CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
  7. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).
  8. Wang, Qiang & Han, Xinyu, 2021. "Is decoupling embodied carbon emissions from economic output in Sino-US trade possible?," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
  9. Vassilis Stavrakas & Nikos Kleanthis & Alexandros Flamos, 2020. "An Ex-Post Assessment of RES-E Support in Greece by Investigating the Monetary Flows and the Causal Relationships in the Electricity Market," Energies, MDPI, vol. 13(17), pages 1-29, September.
  10. Richard Gardiner & Petr Hajek, 2020. "Interactions among energy consumption, CO2, and economic development in European Union countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 723-740, July.
  11. Cheng Cheng & Xiaohang Ren & Zhen Wang & Yukun Shi, 2018. "The Impacts of Non-Fossil Energy, Economic Growth, Energy Consumption, and Oil Price on Carbon Intensity: Evidence from a Panel Quantile Regression Analysis of EU 28," Sustainability, MDPI, vol. 10(11), pages 1-20, November.
  12. Dimitra Ioannidou & Guido Sonnemann & Sangwon Suh, 2020. "Do we have enough natural sand for low‐carbon infrastructure?," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1004-1015, October.
  13. Huiling Wang & Jiaxin Luo & Mengtian Zhang & Yue Ling, 2022. "The Impact of Transportation Restructuring on the Intensity of Greenhouse Gas Emissions: Empirical Data from China," IJERPH, MDPI, vol. 19(19), pages 1-16, October.
  14. Shasha Wang & Rongrong Li, 2018. "Toward the Coordinated Sustainable Development of Urban Water Resource Use and Economic Growth: An Empirical Analysis of Tianjin City, China," Sustainability, MDPI, vol. 10(5), pages 1-13, April.
  15. Andrianesis, Panagiotis & Biskas, Pandelis & Liberopoulos, George, 2021. "Evaluating the cost of emissions in a pool-based electricity market," Applied Energy, Elsevier, vol. 298(C).
  16. Andreoni, Valeria, 2020. "The energy metabolism of countries: Energy efficiency and use in the period that followed the global financial crisis," Energy Policy, Elsevier, vol. 139(C).
  17. Gideon Nkam Taka & Ta Thi Huong & Izhar Hussain Shah & Hung-Suck Park, 2020. "Determinants of Energy-Based CO 2 Emissions in Ethiopia: A Decomposition Analysis from 1990 to 2017," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
  18. Ping Zhou & Hailing Li, 2022. "Carbon Emissions from Manufacturing Sector in Jiangsu Province: Regional Differences and Decomposition of Driving Factors," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
  19. Xian’en Wang & Tingyu Hu & Junnian Song & Haiyan Duan, 2022. "Tracking Key Industrial Sectors for CO 2 Mitigation through the Driving Effects: An Attribution Analysis," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
  20. Škare, Marinko & Porada-Rochoń, Małgorzata, 2023. "Are we making progress on decarbonization? A panel heterogeneous study of the long-run relationship in selected economies," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
  21. Kan, Siyi & Chen, Bin & Chen, Guoqian, 2019. "Worldwide energy use across global supply chains: Decoupled from economic growth?," Applied Energy, Elsevier, vol. 250(C), pages 1235-1245.
  22. Jaume Freire González & Oliver Canosa, 2023. "Economic Crises and Energy Use: An Input-Output Analysis of Catalonia’s 2008–2014 Financial Crisis," Working Papers 1405, Barcelona School of Economics.
  23. Leal, Patrícia Alexandra & Marques, António Cardoso & Fuinhas, José Alberto, 2019. "Decoupling economic growth from GHG emissions: Decomposition analysis by sectoral factors for Australia," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 12-26.
  24. Xue-ting Jiang & Min Su & Rongrong Li, 2018. "Investigating the Factors Influencing the Decoupling of Transport-Related Carbon Emissions from Turnover Volume in China," Sustainability, MDPI, vol. 10(9), pages 1-17, August.
  25. Chen, Jiandong & Xu, Chong & Song, Malin & Deng, Xiangzheng & Shen, Zhiyang, 2022. "Towards sustainable development: Distribution effect of carbon-food nexus in Chinese cities," Applied Energy, Elsevier, vol. 309(C).
  26. Yong Wang & Yu Zhou & Lin Zhu & Fei Zhang & Yingchun Zhang, 2018. "Influencing Factors and Decoupling Elasticity of China’s Transportation Carbon Emissions," Energies, MDPI, vol. 11(5), pages 1-29, May.
  27. Guang, Fengtao & Wen, Le & Sharp, Basil, 2022. "Energy efficiency improvements and industry transition: An analysis of China's electricity consumption," Energy, Elsevier, vol. 244(PA).
  28. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2022. "Does the European Union energy policy support progress in decoupling economic growth from emissions?," Energy Policy, Elsevier, vol. 170(C).
  29. Zbigniew Gołaś, 2023. "Decoupling Analysis of Energy-Related Carbon Dioxide Emissions from Economic Growth in Poland," Energies, MDPI, vol. 16(9), pages 1-27, April.
  30. Karmellos, M. & Kosmadakis, V. & Dimas, P. & Tsakanikas, A. & Fylaktos, N. & Taliotis, C. & Zachariadis, T., 2021. "A decomposition and decoupling analysis of carbon dioxide emissions from electricity generation: Evidence from the EU-27 and the UK," Energy, Elsevier, vol. 231(C).
  31. Mathy Sane & Miroslav Hajek & Joseph Phiri & Jamilu Said Babangida & Chukwudi Nwaogu, 2022. "Application of Decoupling Approach to Evaluate Electricity Consumption, Agriculture, GDP, Crude Oil Production, and CO 2 Emission Nexus in Support of Economic Instrument in Nigeria," Sustainability, MDPI, vol. 14(6), pages 1-15, March.
  32. Karasmanaki, Evangelia & Tsantopoulos, Georgios, 2019. "Exploring future scientists' awareness about and attitudes towards renewable energy sources," Energy Policy, Elsevier, vol. 131(C), pages 111-119.
  33. Xue-Ting Jiang & Rongrong Li, 2017. "Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States," Sustainability, MDPI, vol. 9(6), pages 1-13, May.
  34. Zbigniew Gołaś, 2022. "Changes in Energy-Related Carbon Dioxide Emissions of the Agricultural Sector in Poland from 2000 to 2019," Energies, MDPI, vol. 15(12), pages 1-18, June.
  35. Cansino, José M. & Román-Collado, Rocío & Merchán, José, 2019. "Do Spanish energy efficiency actions trigger JEVON’S paradox?," Energy, Elsevier, vol. 181(C), pages 760-770.
  36. Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
  37. Atif Awad, 2021. "Structural Transformation versus Environmental Quality: The Experience of the Low-income Countries in Sub Saharan Africa," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 479-488.
  38. Mariano González-Sánchez & Juan Luis Martín-Ortega, 2020. "Greenhouse Gas Emissions Growth in Europe: A Comparative Analysis of Determinants," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
  39. Min Su & Shasha Wang & Rongrong Li & Ningning Guo, 2020. "Decomposition analysis of the decoupling process between economic growth and carbon emission in Beijing city, China: A sectoral perspective," Energy & Environment, , vol. 31(6), pages 961-982, September.
  40. Perry Sadorsky, 2020. "Energy Related CO 2 Emissions before and after the Financial Crisis," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.