IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v42y2015icp1393-1417.html
   My bibliography  Save this item

A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2021. "Combustion chamber modifications to improve diesel engine performance and reduce emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  2. Singh, Devendra & Subramanian, K.A. & Garg, MO, 2018. "Comprehensive review of combustion, performance and emissions characteristics of a compression ignition engine fueled with hydroprocessed renewable diesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2947-2954.
  3. Siva Krishna Reddy Dwarshala & Siva Subramaniam Rajakumar & Obula Reddy Kummitha & Elumalai Perumal Venkatesan & Ibham Veza & Olusegun David Samuel, 2023. "A Review on Recent Developments of RCCI Engines Operated with Alternative Fuels," Energies, MDPI, vol. 16(7), pages 1-27, April.
  4. James W. G. Turner & Andrew G. J. Lewis & Sam Akehurst & Chris J. Brace & Sebastian Verhelst & Jeroen Vancoillie & Louis Sileghem & Felix C. P. Leach & Peter P. Edwards, 2020. "Alcohol Fuels for Spark-Ignition Engines: Performance, Efficiency, and Emission Effects at Mid to High Blend Rates for Ternary Mixtures," Energies, MDPI, vol. 13(23), pages 1-31, December.
  5. Hagos, Ftwi Y. & Ali, Obed M. & Mamat, Rizalman & Abdullah, Abdul A., 2017. "Effect of emulsification and blending on the oxygenation and substitution of diesel fuel for compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1281-1294.
  6. Peter N. Ciesielski & M. Brennan Pecha & Vivek S. Bharadwaj & Calvin Mukarakate & G. Jeremy Leong & Branden Kappes & Michael F. Crowley & Seonah Kim & Thomas D. Foust & Mark R. Nimlos, 2018. "Advancing catalytic fast pyrolysis through integrated multiscale modeling and experimentation: Challenges, progress, and perspectives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(4), July.
  7. Schiemann, Martin & Bergthorson, Jeffrey & Fischer, Peter & Scherer, Viktor & Taroata, Dan & Schmid, Günther, 2016. "A review on lithium combustion," Applied Energy, Elsevier, vol. 162(C), pages 948-965.
  8. Bergthorson, Jeffrey M. & Yavor, Yinon & Palecka, Jan & Georges, William & Soo, Michael & Vickery, James & Goroshin, Samuel & Frost, David L. & Higgins, Andrew J., 2017. "Metal-water combustion for clean propulsion and power generation," Applied Energy, Elsevier, vol. 186(P1), pages 13-27.
  9. Matthias Klumpp, 2016. "To Green or Not to Green: A Political, Economic and Social Analysis for the Past Failure of Green Logistics," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
  10. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
  11. Zhao, Qiankun & Cai, Ximing & Mischo, William & Ma, Liyuan, 2020. "How do the research and public communities view biofuel development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  12. Heena Panchasara & Nanjappa Ashwath, 2021. "Effects of Pyrolysis Bio-Oils on Fuel Atomisation—A Review," Energies, MDPI, vol. 14(4), pages 1-22, February.
  13. Merola, Simona Silvia & Tornatore, Cinzia & Irimescu, Adrian & Marchitto, Luca & Valentino, Gerardo, 2016. "Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline," Energy, Elsevier, vol. 108(C), pages 50-62.
  14. Sagar Pokharel & Albina Tropina & Mikhail Shneider, 2022. "Numerical Modeling of Laser Heating and Evaporation of a Single Droplet," Energies, MDPI, vol. 16(1), pages 1-19, December.
  15. Galloni, E. & Scala, F. & Fontana, G., 2019. "Influence of fuel bio-alcohol content on the performance of a turbo-charged, PFI, spark-ignition engine," Energy, Elsevier, vol. 170(C), pages 85-92.
  16. Singh, Devendra & Subramanian, K.A. & Bal, Rajaram & Singh, S.P. & Badola, R., 2018. "Combustion and emission characteristics of a light duty diesel engine fueled with hydro-processed renewable diesel," Energy, Elsevier, vol. 154(C), pages 498-507.
  17. Mikulski, Maciej & Ambrosewicz-Walacik, Marta & Duda, Kamil & Hunicz, Jacek, 2020. "Performance and emission characterization of a common-rail compression-ignition engine fuelled with ternary mixtures of rapeseed oil, pyrolytic oil and diesel," Renewable Energy, Elsevier, vol. 148(C), pages 739-755.
  18. Singh, Paramvir & Varun, & Chauhan, S.R. & Kumar, Niraj, 2016. "A review on methodology for complete elimination of diesel from CI engines using mixed feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1110-1125.
  19. Carminati, Hudson Bolsoni & de Medeiros, José Luiz & Moure, Gustavo Torres & Barbosa, Lara Costa & Araújo, Ofélia de Queiroz F., 2020. "Low-emission pre-combustion gas-to-wire via ionic-liquid [Bmim][NTf2] absorption with high-pressure stripping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  20. Mukhtar, M.N.A. & Hagos, Ftwi Y. & Noor, M.M. & Mamat, Rizalman & Abdullah, A. Adam & Abd Aziz, Abd Rashid, 2019. "Tri-fuel emulsion with secondary atomization attributes for greener diesel engine – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 490-506.
  21. Zhang, Tingting & Xie, Xiaomin & Huang, Zhen, 2017. "The policy recommendations on cassava ethanol in China: Analyzed from the perspective of life cycle “2E&W”," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 12-24.
  22. Iraklis Zahos-Siagos & Vlasios Karathanassis & Dimitrios Karonis, 2018. "Exhaust Emissions and Physicochemical Properties of n -Butanol/Diesel Blends with 2-Ethylhexyl Nitrate (EHN) or Hydrotreated Used Cooking Oil (HUCO) as Cetane Improvers," Energies, MDPI, vol. 11(12), pages 1-20, December.
  23. Saeid Aghahossein Shirazi & Thomas D. Foust & Kenneth F. Reardon, 2020. "Identification of Promising Alternative Mono-Alcohol Fuel Blend Components for Spark Ignition Engines," Energies, MDPI, vol. 13(8), pages 1-16, April.
  24. Hossain, Abul K. & Sharma, Vikas & Ahmad, Gulzar & Awotwe, Tabbi, 2023. "Energy outputs and emissions of biodiesels as a function of coolant temperature and composition," Renewable Energy, Elsevier, vol. 215(C).
  25. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  26. Rafał Longwic & Przemysław Sander & Bronisław Jańczuk & Anna Zdziennicka & Katarzyna Szymczyk, 2021. "Modification of Canola Oil Physicochemical Properties by Hexane and Ethanol with Regards of Its Application in Diesel Engine," Energies, MDPI, vol. 14(15), pages 1-14, July.
  27. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  28. Carbot-Rojas, D.A. & Escobar-Jiménez, R.F. & Gómez-Aguilar, J.F. & Téllez-Anguiano, A.C., 2017. "A survey on modeling, biofuels, control and supervision systems applied in internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1070-1085.
  29. Ahmad, Zeeshan & Kaario, Ossi & Qiang, Cheng & Larmi, Martti, 2021. "Effect of pilot fuel properties on lean dual-fuel combustion and emission characteristics in a heavy-duty engine," Applied Energy, Elsevier, vol. 282(PA).
  30. Aldhaidhawi, Mohanad & Chiriac, Radu & Badescu, Viorel, 2017. "Ignition delay, combustion and emission characteristics of Diesel engine fueled with rapeseed biodiesel – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 178-186.
  31. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
  32. Hanaoka, Toshiaki & Fujimoto, Shinji & Kihara, Hideyuki, 2019. "Improvement of the 1,3-butadiene production process from lignin – A comparison with the gasification power generation process," Renewable Energy, Elsevier, vol. 135(C), pages 1303-1313.
  33. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
  34. Mazen A. Eldeeb & Benjamin Akih-Kumgeh, 2018. "Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels," Energies, MDPI, vol. 11(3), pages 1-47, February.
  35. Oyetola Ogunkunle & Noor A. Ahmed, 2021. "Overview of Biodiesel Combustion in Mitigating the Adverse Impacts of Engine Emissions on the Sustainable Human–Environment Scenario," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
  36. Coban, Kahraman & Şöhret, Yasin & Colpan, C. Ozgur & Karakoç, T. Hikmet, 2017. "Exergetic and exergoeconomic assessment of a small-scale turbojet fuelled with biodiesel," Energy, Elsevier, vol. 140(P2), pages 1358-1367.
  37. Broumand, Mohsen & Khan, Muhammad Shahzeb & Yun, Sean & Hong, Zekai & Thomson, Murray J., 2021. "Feasibility of running a micro gas turbine on wood-derived fast pyrolysis bio-oils: Effect of the fuel spray formation and preparation," Renewable Energy, Elsevier, vol. 178(C), pages 775-784.
  38. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  39. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
  40. Liu, Xinlei & Wang, Hu & Zheng, Zunqing & Liu, Jialin & Reitz, Rolf D. & Yao, Mingfa, 2016. "Development of a combined reduced primary reference fuel-alcohols (methanol/ethanol/propanols/butanols/n-pentanol) mechanism for engine applications," Energy, Elsevier, vol. 114(C), pages 542-558.
  41. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
  42. Sheriff, S. Abdul & Kumar, Indrala Kishan & Mandhatha, Petluri Sai & Jambal, Samraj Sunder & Sellappan, Raja & Ashok, B. & Nanthagopal, K., 2020. "Emission reduction in CI engine using biofuel reformulation strategies through nano additives for atmospheric air quality improvement," Renewable Energy, Elsevier, vol. 147(P1), pages 2295-2308.
  43. Omidvarborna, Hamid & Kumar, Ashok & Kim, Dong-Shik, 2015. "Recent studies on soot modeling for diesel combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 635-647.
  44. Budzianowski, Wojciech M. & Budzianowska, Dominika A., 2015. "Economic analysis of biomethane and bioelectricity generation from biogas using different support schemes and plant configurations," Energy, Elsevier, vol. 88(C), pages 658-666.
  45. Hamid, M. Fadzli & Idroas, M. Yusof & Mazlan, M. & Sa'ad, S. & Teoh, Y.H. & Che Mat, S. & Miskam, M.A. & Abdullah, M.K., 2022. "Methods for improving the in-cylinder airflow characteristics for sustainable transportation using fuels with higher viscosity: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  46. Alberto Veses & Juan Daniel Martínez & María Soledad Callén & Ramón Murillo & Tomás García, 2020. "Application of Upgraded Drop-In Fuel Obtained from Biomass Pyrolysis in a Spark Ignition Engine," Energies, MDPI, vol. 13(8), pages 1-15, April.
  47. Ameen, Mariam & Azizan, Mohammad Tazli & Yusup, Suzana & Ramli, Anita & Yasir, Madiha, 2017. "Catalytic hydrodeoxygenation of triglycerides: An approach to clean diesel fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1072-1088.
  48. Khidr, Kareem I. & Eldrainy, Yehia A. & EL-Kassaby, Mohamed M., 2017. "Towards lower gas turbine emissions: Flameless distributed combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1237-1266.
  49. Nadir Yilmaz & Alpaslan Atmanli & Matthew J. Hall & Francisco M. Vigil, 2022. "Determination of the Optimum Blend Ratio of Diesel, Waste Oil Derived Biodiesel and 1-Pentanol Using the Response Surface Method," Energies, MDPI, vol. 15(14), pages 1-16, July.
  50. Musaab O. El-Faroug & Fuwu Yan & Maji Luo & Richard Fiifi Turkson, 2016. "Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline," Energies, MDPI, vol. 9(12), pages 1-24, November.
  51. Ashraf Elfasakhany, 2021. "State of Art of Using Biofuels in Spark Ignition Engines," Energies, MDPI, vol. 14(3), pages 1-26, February.
  52. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
  53. Bergthorson, J.M. & Goroshin, S. & Soo, M.J. & Julien, P. & Palecka, J. & Frost, D.L. & Jarvis, D.J., 2015. "Direct combustion of recyclable metal fuels for zero-carbon heat and power," Applied Energy, Elsevier, vol. 160(C), pages 368-382.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.