IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v32y2014icp486-503.html
   My bibliography  Save this item

A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Manuela Castañeda & Andrés A. Amell & Mauricio A. Correa & Claudio E. Aguilar & Henry A. Colorado, 2023. "Thermoelectric Generator Using Low-Cost Thermoelectric Modules for Low-Temperature Waste Heat Recovery," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
  2. Su, Hetao & Zhou, Fubao & Qi, Haining & Li, Jinshi, 2017. "Design for thermoelectric power generation using subsurface coal fires," Energy, Elsevier, vol. 140(P1), pages 929-940.
  3. Ravi Anant Kishore & Roop L. Mahajan & Shashank Priya, 2018. "Combinatory Finite Element and Artificial Neural Network Model for Predicting Performance of Thermoelectric Generator," Energies, MDPI, vol. 11(9), pages 1-17, August.
  4. Agnieszka Żelazna & Justyna Gołębiowska, 2020. "A PV-Powered TE Cooling System with Heat Recovery: Energy Balance and Environmental Impact Indicators," Energies, MDPI, vol. 13(7), pages 1-22, April.
  5. Sajid, Muhammad & Hassan, Ibrahim & Rahman, Aziz, 2017. "An overview of cooling of thermoelectric devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 15-22.
  6. Song, Zhiying & Ji, Jie & Li, Zhaomeng, 2022. "Performance of a heat pump system in combination with thermoelectric generators," Energy, Elsevier, vol. 239(PA).
  7. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
  8. Yang, Feng & Du, Lin & Chen, Weigen & Li, Jian & Wang, Youyuan & Wang, Disheng, 2017. "Hybrid energy harvesting for condition monitoring sensors in power grids," Energy, Elsevier, vol. 118(C), pages 435-445.
  9. Fernández-Yañez, Pablo & Armas, Octavio & Capetillo, Azael & Martínez-Martínez, Simón, 2018. "Thermal analysis of a thermoelectric generator for light-duty diesel engines," Applied Energy, Elsevier, vol. 226(C), pages 690-702.
  10. Chika Maduabuchi & Hassan Fagehi & Ibrahim Alatawi & Mohammad Alkhedher, 2022. "Predicting the Optimal Performance of a Concentrated Solar Segmented Variable Leg Thermoelectric Generator Using Neural Networks," Energies, MDPI, vol. 15(16), pages 1-25, August.
  11. Chen, Wei-Hsin & Wu, Po-Hua & Lin, Yu-Li, 2018. "Performance optimization of thermoelectric generators designed by multi-objective genetic algorithm," Applied Energy, Elsevier, vol. 209(C), pages 211-223.
  12. Al-Nimr, M.A. & Al-Darawsheh, I.A. & AL-Khalayleh, L.A., 2018. "A novel hybrid cavity solar thermal collector," Renewable Energy, Elsevier, vol. 115(C), pages 299-307.
  13. Zeb, K. & Ali, S.M. & Khan, B. & Mehmood, C.A. & Tareen, N. & Din, W. & Farid, U. & Haider, A., 2017. "A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1142-1155.
  14. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
  15. Lv, Hao & Wang, Xiao-Dong & Meng, Jing-Hui & Wang, Tian-Hu & Yan, Wei-Mon, 2016. "Enhancement of maximum temperature drop across thermoelectric cooler through two-stage design and transient supercooling effect," Applied Energy, Elsevier, vol. 175(C), pages 285-292.
  16. Liu, Yi-Hua & Chiu, Yi-Hsun & Huang, Jia-Wei & Wang, Shun-Chung, 2016. "A novel maximum power point tracker for thermoelectric generation system," Renewable Energy, Elsevier, vol. 97(C), pages 306-318.
  17. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  18. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Li, Yunhai & Li, Jing & Zhao, Xudong, 2023. "Annual analysis of the photovoltaic direct-expansion heat pump assisted by double condensing equipment for secondary power generation," Renewable Energy, Elsevier, vol. 209(C), pages 169-183.
  19. Kumar, Prashant & Kishore, Ravi Anant & Maurya, Deepam & Stewart, Colin J. & Mirzaeifar, Reza & Quandt, Eckhard & Priya, Shashank, 2019. "Shape memory alloy engine for high efficiency low-temperature gradient thermal to electrical conversion," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  20. Peter Spriggs & Qing Wang, 2020. "Computationally Modelling the Use of Nanotechnology to Enhance the Performance of Thermoelectric Materials," Energies, MDPI, vol. 13(19), pages 1-21, September.
  21. Date, Abhijit & Gauci, Luke & Chan, Raymond & Date, Ashwin, 2015. "Performance review of a novel combined thermoelectric power generation and water desalination system," Renewable Energy, Elsevier, vol. 83(C), pages 256-269.
  22. Jianhua Zhou & Donghua Li, 2021. "The thermoelectric properties of four metastable graphene allotrope nanoribbons with nonalternant topology," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-7, August.
  23. Jia, Xiao-Dong & Wang, Yuan-Jing & Gao, Yuan-Wen, 2017. "Numerical simulation of thermoelectric performance of linear-shaped thermoelectric generators under transient heat supply," Energy, Elsevier, vol. 130(C), pages 276-285.
  24. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K., 2017. "A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 572-584.
  25. Jia, Xiaodong & Guo, Qiuting, 2020. "Design study of Bismuth-Telluride-based thermoelectric generators based on thermoelectric and mechanical performance," Energy, Elsevier, vol. 190(C).
  26. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Experimental and numerical investigation on a photovoltaic heat pump with two condensers: A micro-channel heat pipe/thermoelectric generator condenser and a submerged coil condenser," Energy, Elsevier, vol. 242(C).
  27. Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
  28. Owoyele, Opeoluwa & Ferguson, Scott & O’Connor, Brendan T., 2015. "Performance analysis of a thermoelectric cooler with a corrugated architecture," Applied Energy, Elsevier, vol. 147(C), pages 184-191.
  29. Massaguer Colomer, Albert & Massaguer, Eduard & Pujol, Toni & Comamala, Martí & Montoro, Lino & González, J.R., 2015. "Electrically tunable thermal conductivity in thermoelectric materials: Active and passive control," Applied Energy, Elsevier, vol. 154(C), pages 709-717.
  30. Xiong, Bing & Chen, Lingen & Meng, Fankai & Sun, Fengrui, 2014. "Modeling and performance analysis of a two-stage thermoelectric energy harvesting system from blast furnace slag water waste heat," Energy, Elsevier, vol. 77(C), pages 562-569.
  31. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
  32. Sun, Dongfang & Shen, Limei & Sun, Miao & Yao, Yu & Chen, Huanxin & Jin, Shiping, 2018. "An effective method of evaluating the device-level thermophysical properties and performance of micro-thermoelectric coolers," Applied Energy, Elsevier, vol. 219(C), pages 93-104.
  33. Borhani, S.M. & Hosseini, M.J. & Pakrouh, R. & Ranjbar, A.A. & Nourian, A., 2021. "Performance enhancement of a thermoelectric harvester with a PCM/Metal foam composite," Renewable Energy, Elsevier, vol. 168(C), pages 1122-1140.
  34. Hyland, Melissa & Hunter, Haywood & Liu, Jie & Veety, Elena & Vashaee, Daryoosh, 2016. "Wearable thermoelectric generators for human body heat harvesting," Applied Energy, Elsevier, vol. 182(C), pages 518-524.
  35. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
  36. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
  37. Ding, L.C. & Akbarzadeh, A. & Date, Abhijit, 2016. "Electric power generation via plate type power generation unit from solar pond using thermoelectric cells," Applied Energy, Elsevier, vol. 183(C), pages 61-76.
  38. Elsheikh, A.H. & Sharshir, S.W. & Mostafa, Mohamed E. & Essa, F.A. & Ahmed Ali, Mohamed Kamal, 2018. "Applications of nanofluids in solar energy: A review of recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3483-3502.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.