IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v168y2021icp1122-1140.html
   My bibliography  Save this article

Performance enhancement of a thermoelectric harvester with a PCM/Metal foam composite

Author

Listed:
  • Borhani, S.M.
  • Hosseini, M.J.
  • Pakrouh, R.
  • Ranjbar, A.A.
  • Nourian, A.

Abstract

The present numerical investigation examines the performance improvement of thermoelectric generators (TEGs) by using phase change materials (PCM) and porous medium. Due to the high latent heat of PCMs, both sides of the TEG were filled with paraffin RT35 (on the cold-side) and paraffin RT69 (on the hot-side). The PCM in the cold-side of the TEG was used as a heat-sink whereas the PCM in hot-side of the TEG was used to reduce the output voltage fluctuations. Since the system was periodically subjected to heat flux from an external heat source, the paraffin in the hot-side of the TEG was also used to generate a continuous thermal heat when the heat source was cut-off. To increase the thermal conductivity of the phase change material, this investigation studied the effect of using the copper porous medium with different porosities (0.80, 0.90, and 0.95) and three different pores per inches (PPI) as 10, 20, and 40. The results show that the use of porous on the cold-side of the TEG produces more electrical energy and output voltage compared to (i) having porous medium on the hot-side and (ii) using PCM without porous medium on both sides of the thermoelectric generator. Furthermore, the results indicated that the TEG performance enhanced by increasing PPI and reducing porosity. As a result, by increasing the PPI from 10 to 40 (at 0.80 porosity) and by reducing porosity from 0.95 to 0.80 (at PPI 20), the electricity generated increases by 13.57 and 5.36%, respectively.

Suggested Citation

  • Borhani, S.M. & Hosseini, M.J. & Pakrouh, R. & Ranjbar, A.A. & Nourian, A., 2021. "Performance enhancement of a thermoelectric harvester with a PCM/Metal foam composite," Renewable Energy, Elsevier, vol. 168(C), pages 1122-1140.
  • Handle: RePEc:eee:renene:v:168:y:2021:i:c:p:1122-1140
    DOI: 10.1016/j.renene.2021.01.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121000264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.01.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Tengfei & Xuan, Yimin & Yin, Ershuai & Li, Qiang & Li, Dianhong, 2017. "Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials," Energy, Elsevier, vol. 122(C), pages 94-102.
    2. Kim, Yong Jun & Gu, Hyun Mo & Kim, Choong Sun & Choi, Hyeongdo & Lee, Gyusoup & Kim, Seongho & Yi, Kevin K. & Lee, Sang Gug & Cho, Byung Jin, 2018. "High-performance self-powered wireless sensor node driven by a flexible thermoelectric generator," Energy, Elsevier, vol. 162(C), pages 526-533.
    3. Tu, Yubin & Zhu, Wei & Lu, Tianqi & Deng, Yuan, 2017. "A novel thermoelectric harvester based on high-performance phase change material for space application," Applied Energy, Elsevier, vol. 206(C), pages 1194-1202.
    4. Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
    5. Yuan, Zicheng & Tang, Xiaobin & Xu, Zhiheng & Li, Junqin & Chen, Wang & Liu, Kai & Liu, Yunpeng & Zhang, Zhengrong, 2018. "Screen-printed radial structure micro radioisotope thermoelectric generator," Applied Energy, Elsevier, vol. 225(C), pages 746-754.
    6. Tian, Y. & Zhao, C.Y., 2011. "A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals," Energy, Elsevier, vol. 36(9), pages 5539-5546.
    7. Zhu, Wei & Tu, Yubin & Deng, Yuan, 2018. "Multi-parameter optimization design of thermoelectric harvester based on phase change material for space generation," Applied Energy, Elsevier, vol. 228(C), pages 873-880.
    8. Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Applied Energy, Elsevier, vol. 191(C), pages 22-34.
    9. Zheng, X.F. & Liu, C.X. & Yan, Y.Y. & Wang, Q., 2014. "A review of thermoelectrics research – Recent developments and potentials for sustainable and renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 486-503.
    10. Aljaghtham, Mutabe & Celik, Emrah, 2020. "Design optimization of oil pan thermoelectric generator to recover waste heat from internal combustion engines," Energy, Elsevier, vol. 200(C).
    11. Liu, Lu & Fan, Xiaoqiao & Zhang, Yuang & Zhang, Shufen & Wang, Wentao & Jin, Xin & Tang, Bingtao, 2020. "Novel bio-based phase change materials with high enthalpy for thermal energy storage," Applied Energy, Elsevier, vol. 268(C).
    12. Eisapour, M. & Eisapour, Amir Hossein & Hosseini, M.J. & Talebizadehsardari, P., 2020. "Exergy and energy analysis of wavy tubes photovoltaic-thermal systems using microencapsulated PCM nano-slurry coolant fluid," Applied Energy, Elsevier, vol. 266(C).
    13. Atouei, S. Ahmadi & Rezania, A. & Ranjbar, A.A. & Rosendahl, L.A., 2018. "Protection and thermal management of thermoelectric generator system using phase change materials: An experimental investigation," Energy, Elsevier, vol. 156(C), pages 311-318.
    14. Gou, Xiaolong & Ping, Huifeng & Ou, Qiang & Xiao, Heng & Qing, Shaowei, 2015. "A novel thermoelectric generation system with thermal switch," Applied Energy, Elsevier, vol. 160(C), pages 843-852.
    15. Liao, Xinzhong & Liu, Yuxuan & Ren, Jiahang & Guan, Liuping & Sang, Xuehao & Wang, Bowen & Zhang, Hang & Wang, Qiuwang & Ma, Ting, 2020. "Investigation of a double-PCM-based thermoelectric energy-harvesting device using temperature fluctuations in an ambient environment," Energy, Elsevier, vol. 202(C).
    16. Zhang, P. & Meng, Z.N. & Zhu, H. & Wang, Y.L. & Peng, S.P., 2017. "Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam," Applied Energy, Elsevier, vol. 185(P2), pages 1971-1983.
    17. Li, Shuang-Fei & Liu, Zhen-hua & Wang, Xue-Jiao, 2019. "A comprehensive review on positive cold energy storage technologies and applications in air conditioning with phase change materials," Applied Energy, Elsevier, vol. 255(C).
    18. Xu, Yang & Li, Ming-Jia & Zheng, Zhang-Jing & Xue, Xiao-Dai, 2018. "Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment," Applied Energy, Elsevier, vol. 212(C), pages 868-880.
    19. Mahdi, Jasim M. & Nsofor, Emmanuel C., 2017. "Solidification enhancement in a triplex-tube latent heat energy storage system using nanoparticles-metal foam combination," Energy, Elsevier, vol. 126(C), pages 501-512.
    20. Nguyen Huu, Trung & Nguyen Van, Toan & Takahito, Ono, 2018. "Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process," Applied Energy, Elsevier, vol. 210(C), pages 467-476.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Zijie & Zhang, Kai & Jiang, Kaiyu & Li, Haoran & Ye, Peiliang & Yang, Haibin & Mahian, Omid, 2023. "Maximizing energy generation: A study of radiative cooling-based thermoelectric power devices," Energy, Elsevier, vol. 274(C).
    2. Duan, Juan, 2021. "The PCM-porous system used to cool the inclined PV panel," Renewable Energy, Elsevier, vol. 180(C), pages 1315-1332.
    3. Morena Falcone & Danish Rehman & Matteo Dongellini & Claudia Naldi & Beatrice Pulvirenti & Gian Luca Morini, 2022. "Experimental Investigation on Latent Thermal Energy Storages (LTESs) Based on Pure and Copper-Foam-Loaded PCMs," Energies, MDPI, vol. 15(13), pages 1-13, July.
    4. Wang, Jun & Song, Xiangxiang & Ni, Qiqiang & Li, Xingjun & Meng, Qingtian, 2021. "Experimental investigation on the influence of phase change material on the output performance of thermoelectric generator," Renewable Energy, Elsevier, vol. 177(C), pages 884-894.
    5. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ren, Fengsheng & Yang, Yue & Ma, Bijian & Zhu, Yonggang, 2023. "Performance optimization for a novel two-stage thermoelectric generator with different PCMs embedding modes," Energy, Elsevier, vol. 281(C).
    6. Yousefi, Esmaeil & Nejad, Ali Abbas & Rezania, Alireza, 2022. "Higher power output in thermoelectric generator integrated with phase change material and metal foams under transient boundary condition," Energy, Elsevier, vol. 256(C).
    7. Meng, Jing-Hui & Gao, De-Yang & Liu, Yan & Zhang, Kai & Lu, Gui, 2022. "Heat transfer mechanism and structure design of phase change materials to improve thermoelectric device performance," Energy, Elsevier, vol. 245(C).
    8. Hong, Bing-Hua & Huang, Xiao-Yan & He, Jian-Wei & Cai, Yang & Wang, Wei-Wei & Zhao, Fu-Yun, 2023. "Round-the-clock performance of solar thermoelectric wall with phase change material in subtropical climate: Critical analysis and parametric investigations," Energy, Elsevier, vol. 272(C).
    9. Liang, L. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Chen, C.Q., 2021. "Experimental and numerical investigations of latent thermal energy storage using combined flat micro-heat pipe array–metal foam configuration: Simultaneous charging and discharging," Renewable Energy, Elsevier, vol. 171(C), pages 416-430.
    10. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    11. Kashif Irshad, 2021. "Performance Improvement of Thermoelectric Air Cooler System by Using Variable-Pulse Current for Building Applications," Sustainability, MDPI, vol. 13(17), pages 1-13, August.
    12. Wang, Ji-Xiang & Qian, Jian & Wang, Ni & Zhang, He & Cao, Xiang & Liu, Feifan & Hao, Guanqiu, 2023. "A scalable micro-encapsulated phase change material and liquid metal integrated composite for sustainable data center cooling," Renewable Energy, Elsevier, vol. 213(C), pages 75-85.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamidi, E. & Ganesan, P.B. & Sharma, R.K. & Yong, K.W., 2023. "Computational study of heat transfer enhancement using porous foams with phase change materials: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    2. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Joshi, Varun & Rathod, Manish K., 2019. "Thermal performance augmentation of metal foam infused phase change material using a partial filling strategy: An evaluation for fill height ratio and porosity," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
    5. Kumar, Ashish & Saha, Sandip K., 2020. "Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads," Applied Energy, Elsevier, vol. 263(C).
    6. Hou, Yujie & Chen, Hua & Liu, Xiuli, 2022. "Experimental study on the effect of partial filling of copper foam on heat storage of paraffin-based PCM," Renewable Energy, Elsevier, vol. 192(C), pages 561-571.
    7. Aramesh, M. & Shabani, B., 2022. "Metal foam-phase change material composites for thermal energy storage: A review of performance parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).
    9. Ge, Ruihuan & Li, Qi & Li, Chuan & Liu, Qing, 2022. "Evaluation of different melting performance enhancement structures in a shell-and-tube latent heat thermal energy storage system," Renewable Energy, Elsevier, vol. 187(C), pages 829-843.
    10. Sardari, Pouyan Talebizadeh & Giddings, Donald & Grant, David & Gillott, Mark & Walker, Gavin S., 2020. "Discharge of a composite metal foam/phase change material to air heat exchanger for a domestic thermal storage unit," Renewable Energy, Elsevier, vol. 148(C), pages 987-1001.
    11. Cui, Wei & Si, Tianyu & Li, Xiangxuan & Li, Xinyi & Lu, Lin & Ma, Ting & Wang, Qiuwang, 2022. "Heat transfer enhancement of phase change materials embedded with metal foam for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    12. Peng, Hao & Guo, Wenhua & Feng, Shiyu & Shen, Yijun, 2022. "A novel thermoelectric energy harvester using gallium as phase change material for spacecraft power application," Applied Energy, Elsevier, vol. 322(C).
    13. Shahsavar, Amin & Al-Rashed, Abdullah A.A.A. & Entezari, Sajad & Sardari, Pouyan Talebizadeh, 2019. "Melting and solidification characteristics of a double-pipe latent heat storage system with sinusoidal wavy channels embedded in a porous medium," Energy, Elsevier, vol. 171(C), pages 751-769.
    14. Gulfam, Raza & Zhang, Peng & Meng, Zhaonan, 2019. "Advanced thermal systems driven by paraffin-based phase change materials – A review," Applied Energy, Elsevier, vol. 238(C), pages 582-611.
    15. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Wang, Jian & Kong, Hui & Xu, Yaobin & Wu, Jinsong, 2019. "Experimental investigation of heat transfer and flow characteristics in finned copper foam heat sinks subjected to jet impingement cooling," Applied Energy, Elsevier, vol. 241(C), pages 433-443.
    17. Zhang, Chunwei & Yu, Meng & Fan, Yubin & Zhang, Xuejun & Zhao, Yang & Qiu, Limin, 2020. "Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe," Energy, Elsevier, vol. 195(C).
    18. Aljaghtham, Mutabe & Celik, Emrah, 2022. "Design of cascade thermoelectric generation systems with improved thermal reliability," Energy, Elsevier, vol. 243(C).
    19. Yang, Xiaohu & Wei, Pan & Wang, Xinyi & He, Ya-Ling, 2020. "Gradient design of pore parameters on the melting process in a thermal energy storage unit filled with open-cell metal foam," Applied Energy, Elsevier, vol. 268(C).
    20. Yang, Xiaohu & Yu, Jiabang & Guo, Zengxu & Jin, Liwen & He, Ya-Ling, 2019. "Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube," Applied Energy, Elsevier, vol. 239(C), pages 142-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:168:y:2021:i:c:p:1122-1140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.