IDEAS home Printed from https://ideas.repec.org/r/eee/renene/v33y2008i9p1998-2006.html
   My bibliography  Save this item

Thermodynamic analysis of CAES/TES systems for renewable energy plants

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Guo, Huan & Xu, Yujie & Kang, Haoyuan & Guo, Wenbing & Liu, Yu & Zhang, Xinjing & Zhou, Xuezhi & Chen, Haisheng, 2023. "From theory to practice: Evaluating the thermodynamic design landscape of compressed air energy storage systems," Applied Energy, Elsevier, vol. 352(C).
  2. Zhongguang Fu & Ke Lu & Yiming Zhu, 2015. "Thermal System Analysis and Optimization of Large-Scale Compressed Air Energy Storage (CAES)," Energies, MDPI, vol. 8(8), pages 1-14, August.
  3. Ai, Wei & Wang, Liang & Lin, Xipeng & Zhang, Shuang & Bai, Yakai & Chen, Haisheng, 2023. "Mathematical and thermo-economic analysis of thermal insulation for thermal energy storage applications," Renewable Energy, Elsevier, vol. 213(C), pages 233-245.
  4. Xu, Qingqing & Wu, Yuhang & Zheng, Wenpei & Gong, Yunhua & Dubljevic, Stevan, 2023. "Modeling and dynamic safety control of compressed air energy storage system," Renewable Energy, Elsevier, vol. 208(C), pages 203-213.
  5. Xia, Caichu & Zhou, Yu & Zhou, Shuwei & Zhang, Pingyang & Wang, Fei, 2015. "A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns," Renewable Energy, Elsevier, vol. 74(C), pages 718-726.
  6. Zhang, Yuan & Yang, Ke & Li, Xuemei & Xu, Jianzhong, 2013. "The thermodynamic effect of thermal energy storage on compressed air energy storage system," Renewable Energy, Elsevier, vol. 50(C), pages 227-235.
  7. Ruixiong Li & Huanran Wang & Erren Yao & Shuyu Zhang, 2016. "Thermo-Economic Comparison and Parametric Optimizations among Two Compressed Air Energy Storage System Based on Kalina Cycle and ORC," Energies, MDPI, vol. 10(1), pages 1-19, December.
  8. Drury, Easan & Denholm, Paul & Sioshansi, Ramteen, 2011. "The value of compressed air energy storage in energy and reserve markets," Energy, Elsevier, vol. 36(8), pages 4959-4973.
  9. de Bosio, Federico & Verda, Vittorio, 2015. "Thermoeconomic analysis of a Compressed Air Energy Storage (CAES) system integrated with a wind power plant in the framework of the IPEX Market," Applied Energy, Elsevier, vol. 152(C), pages 173-182.
  10. Arabkoohsar, A. & Machado, L. & Farzaneh-Gord, M. & Koury, R.N.N., 2015. "The first and second law analysis of a grid connected photovoltaic plant equipped with a compressed air energy storage unit," Energy, Elsevier, vol. 87(C), pages 520-539.
  11. Facci, Andrea L. & Sánchez, David & Jannelli, Elio & Ubertini, Stefano, 2015. "Trigenerative micro compressed air energy storage: Concept and thermodynamic assessment," Applied Energy, Elsevier, vol. 158(C), pages 243-254.
  12. Stefano Ubertini & Andrea Luigi Facci & Luca Andreassi, 2017. "Hybrid Hydrogen and Mechanical Distributed Energy Storage," Energies, MDPI, vol. 10(12), pages 1-16, December.
  13. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
  14. Thomas Guewouo & Lingai Luo & Dominique Tarlet & Mohand Tazerout, 2019. "Identification of Optimal Parameters for a Small-Scale Compressed-Air Energy Storage System Using Real Coded Genetic Algorithm," Energies, MDPI, vol. 12(3), pages 1-32, January.
  15. Zhang, Yuan & Yang, Ke & Li, Xuemei & Xu, Jianzhong, 2014. "Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage," Energy, Elsevier, vol. 77(C), pages 460-477.
  16. Roos, P. & Haselbacher, A., 2022. "Analytical modeling of advanced adiabatic compressed air energy storage: Literature review and new models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
  17. Sciacovelli, Adriano & Li, Yongliang & Chen, Haisheng & Wu, Yuting & Wang, Jihong & Garvey, Seamus & Ding, Yulong, 2017. "Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance," Applied Energy, Elsevier, vol. 185(P1), pages 16-28.
  18. Ben De Witt & Ron Hugo, 2014. "Naturally-Forced Slug Flow Expander for Application in a Waste-Heat Recovery Cycle," Energies, MDPI, vol. 7(11), pages 1-22, November.
  19. Zhang, Yi & Xu, Yujie & Guo, Huan & Zhang, Xinjing & Guo, Cong & Chen, Haisheng, 2018. "A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations," Renewable Energy, Elsevier, vol. 125(C), pages 121-132.
  20. Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
  21. Li, Peng & Hu, Qingya & Han, Zhonghe & Wang, Changxin & Wang, Runxia & Han, Xu & Wang, Yongzhen, 2022. "Thermodynamic analysis and multi-objective optimization of a trigenerative system based on compressed air energy storage under different working media and heating storage media," Energy, Elsevier, vol. 239(PD).
  22. Guo, Huan & Xu, Yujie & Chen, Haisheng & Guo, Cong & Qin, Wei, 2017. "Thermodynamic analytical solution and exergy analysis for supercritical compressed air energy storage system," Applied Energy, Elsevier, vol. 199(C), pages 96-106.
  23. Guo, Huan & Xu, Yujie & Zhu, Yilin & Zhou, Xuezhi & Chen, Haisheng, 2022. "Thermal-mechanical coefficient analysis of adiabatic compressor and expander in compressed air energy storage systems," Energy, Elsevier, vol. 244(PB).
  24. He, Qing & Li, Guoqing & Lu, Chang & Du, Dongmei & Liu, Wenyi, 2019. "A compressed air energy storage system with variable pressure ratio and its operation control," Energy, Elsevier, vol. 169(C), pages 881-894.
  25. Hossein Safaei & Michael J. Aziz, 2017. "Thermodynamic Analysis of Three Compressed Air Energy Storage Systems: Conventional, Adiabatic, and Hydrogen-Fueled," Energies, MDPI, vol. 10(7), pages 1-31, July.
  26. Szablowski, Lukasz & Krawczyk, Piotr & Badyda, Krzysztof & Karellas, Sotirios & Kakaras, Emmanuel & Bujalski, Wojciech, 2017. "Energy and exergy analysis of adiabatic compressed air energy storage system," Energy, Elsevier, vol. 138(C), pages 12-18.
  27. Chen Yang & Li Sun & Hao Chen, 2023. "Thermodynamics Analysis of a Novel Compressed Air Energy Storage System Combined with Solid Oxide Fuel Cell–Micro Gas Turbine and Using Low-Grade Waste Heat as Heat Source," Energies, MDPI, vol. 16(19), pages 1-28, October.
  28. Borri, Emiliano & Tafone, Alessio & Romagnoli, Alessandro & Comodi, Gabriele, 2021. "A review on liquid air energy storage: History, state of the art and recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  29. Bai, Hao & Luo, ShiHao & Zhao, Xijie & Zhao, Gen & Gao, Yang, 2022. "Comprehensive assessment of a green cogeneration system based on compressed air energy storage (CAES) and zeotropic mixtures," Energy, Elsevier, vol. 254(PA).
  30. Jannelli, E. & Minutillo, M. & Lubrano Lavadera, A. & Falcucci, G., 2014. "A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology," Energy, Elsevier, vol. 78(C), pages 313-322.
  31. Hartmann, Niklas & Vöhringer, O. & Kruck, C. & Eltrop, L., 2012. "Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations," Applied Energy, Elsevier, vol. 93(C), pages 541-548.
  32. Peng, Hao & Yang, Yu & Li, Rui & Ling, Xiang, 2016. "Thermodynamic analysis of an improved adiabatic compressed air energy storage system," Applied Energy, Elsevier, vol. 183(C), pages 1361-1373.
  33. Morandin, Matteo & Mercangöz, Mehmet & Hemrle, Jaroslav & Maréchal, François & Favrat, Daniel, 2013. "Thermoeconomic design optimization of a thermo-electric energy storage system based on transcritical CO2 cycles," Energy, Elsevier, vol. 58(C), pages 571-587.
  34. Bi, Xianyun & Liu, Pei & Li, Zheng, 2016. "Thermo-dynamic analysis and simulation of a combined air and hydro energy storage (CAHES) system," Energy, Elsevier, vol. 116(P2), pages 1385-1396.
  35. Zhang, Yuan & Yang, Ke & Hong, Hui & Zhong, Xiaohui & Xu, Jianzhong, 2016. "Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid," Renewable Energy, Elsevier, vol. 99(C), pages 682-697.
  36. Zhou, Qian & Du, Dongmei & Lu, Chang & He, Qing & Liu, Wenyi, 2019. "A review of thermal energy storage in compressed air energy storage system," Energy, Elsevier, vol. 188(C).
  37. Tessier, Michael J. & Floros, Michael C. & Bouzidi, Laziz & Narine, Suresh S., 2016. "Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials," Energy, Elsevier, vol. 106(C), pages 528-534.
  38. Li, Yi & Liu, Yaning & Hu, Bin & Li, Yi & Dong, Jiawei, 2020. "Numerical investigation of a novel approach to coupling compressed air energy storage in aquifers with geothermal energy," Applied Energy, Elsevier, vol. 279(C).
  39. Zhang, Yuan & Yang, Ke & Li, Xuemei & Xu, Jianzhong, 2013. "The thermodynamic effect of air storage chamber model on Advanced Adiabatic Compressed Air Energy Storage System," Renewable Energy, Elsevier, vol. 57(C), pages 469-478.
  40. Kim, Young-Min & Shin, Dong-Gil & Lee, Sun-Youp & Favrat, Daniel, 2013. "Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage," Energy, Elsevier, vol. 49(C), pages 484-501.
  41. Morandin, Matteo & Maréchal, François & Mercangöz, Mehmet & Buchter, Florian, 2012. "Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case," Energy, Elsevier, vol. 45(1), pages 375-385.
  42. He, Wei & Wang, Jihong, 2018. "Optimal selection of air expansion machine in Compressed Air Energy Storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 77-95.
  43. Wang, Mingkun & Zhao, Pan & Yang, Yi & Dai, Yiping, 2015. "Performance analysis of energy storage system based on liquid carbon dioxide with different configurations," Energy, Elsevier, vol. 93(P2), pages 1931-1942.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.