IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v36y2011i7p4019-4031.html
   My bibliography  Save this item

Optimal waste heat recovery and reuse in industrial zones

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhang, Chuan & Zhou, Li & Chhabra, Pulkit & Garud, Sushant S. & Aditya, Kevin & Romagnoli, Alessandro & Comodi, Gabriele & Dal Magro, Fabio & Meneghetti, Antonella & Kraft, Markus, 2016. "A novel methodology for the design of waste heat recovery network in eco-industrial park using techno-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 184(C), pages 88-102.
  2. Pan, Huangji & Jin, Yuhui & Li, Shaojun, 2018. "Multi-plant indirect heat integration based on the Alopex-based evolutionary algorithm," Energy, Elsevier, vol. 163(C), pages 811-821.
  3. Meng, Fankai & Chen, Lingen & Sun, Fengrui & Yang, Bo, 2014. "Thermoelectric power generation driven by blast furnace slag flushing water," Energy, Elsevier, vol. 66(C), pages 965-972.
  4. Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.
  5. Lingwei Zhang & Yufei Wang & Xiao Feng, 2021. "A Framework for Design and Operation Optimization for Utilizing Low-Grade Industrial Waste Heat in District Heating and Cooling," Energies, MDPI, vol. 14(8), pages 1-21, April.
  6. Zimmermann, Severin & Meijer, Ingmar & Tiwari, Manish K. & Paredes, Stephan & Michel, Bruno & Poulikakos, Dimos, 2012. "Aquasar: A hot water cooled data center with direct energy reuse," Energy, Elsevier, vol. 43(1), pages 237-245.
  7. Kermani, Maziar & Wallerand, Anna S. & Kantor, Ivan D. & Maréchal, François, 2018. "Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes," Applied Energy, Elsevier, vol. 212(C), pages 1203-1225.
  8. Colmenar-Santos, Antonio & Alberdi-Jiménez, Lucía & Nasarre-Cortés, Lorenzo & Mora-Larramona, Joaquín, 2014. "Residual heat use generated by a 12 kW fuel cell in an electric vehicle heating system," Energy, Elsevier, vol. 68(C), pages 182-190.
  9. Tian, En & He, Ya-Ling & Tao, Wen-Quan, 2017. "Research on a new type waste heat recovery gravity heat pipe exchanger," Applied Energy, Elsevier, vol. 188(C), pages 586-594.
  10. Elin Svensson & Matteo Morandin & Simon Harvey & Stavros Papadokonstantakis, 2020. "Studying the Role of System Aggregation in Energy Targeting: A Case Study of a Swedish Oil Refinery," Energies, MDPI, vol. 13(4), pages 1-28, February.
  11. Song, Runrun & Chang, Chenglin & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model," Energy, Elsevier, vol. 135(C), pages 382-393.
  12. Chang, Chenglin & Chen, Xiaolu & Wang, Yufei & Feng, Xiao, 2017. "Simultaneous optimization of multi-plant heat integration using intermediate fluid circles," Energy, Elsevier, vol. 121(C), pages 306-317.
  13. Varbanov, Petar Sabev & Fodor, Zsófia & Klemeš, Jiří Jaromír, 2012. "Total Site targeting with process specific minimum temperature difference (ΔTmin)," Energy, Elsevier, vol. 44(1), pages 20-28.
  14. Faramarzi, Simin & Tahouni, Nassim & Panjeshahi, M. Hassan, 2022. "Pressure drop optimization in Total Site targeting - A more realistic approach to energy- capital trade-off," Energy, Elsevier, vol. 251(C).
  15. Wang, Ruiqi & Zhao, Huan & Wu, Yan & Wang, Yufei & Feng, Xiao & Liu, Mengxi, 2018. "An industrial facility layout design method considering energy saving based on surplus rectangle fill algorithm," Energy, Elsevier, vol. 158(C), pages 1038-1051.
  16. Bertrand, Alexandre & Mian, Alberto & Kantor, Ivan & Aggoune, Riad & Maréchal, François, 2019. "Regional waste heat valorisation: A mixed integer linear programming method for energy service companies," Energy, Elsevier, vol. 167(C), pages 454-468.
  17. Siliang Yi & Chuyuan Zou, 2023. "Assessing Transformation Practices in China under Energy and Environmental Policy Goals: A Green Design Perspective," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
  18. Chiu, J.NW. & Castro Flores, J. & Martin, V. & Lacarrière, B., 2016. "Industrial surplus heat transportation for use in district heating," Energy, Elsevier, vol. 110(C), pages 139-147.
  19. Zhang, Bing J. & Tang, Qiao Q. & Zhao, Yue & Chen, Yu Q. & Chen, Qing L. & Floudas, Christodoulos A., 2018. "Multi-level energy integration between units, plants and sites for natural gas industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 1-15.
  20. Siyu Xu & Yufei Wang & Xiao Feng, 2020. "Plant Layout Optimization for Chemical Industry Considering Inner Frame Structure Design," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
  21. Abhijit Date & Oranit Traisak & Matthew Ward & Eliza Rupakheti & Eric Hu & Hamid Khayyam, 2022. "Experimental and Theoretical Study on Mechanical Performance of a Sustainable Method to Simultaneously Generate Power and Fresh Water," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
  22. Meng, Fankai & Chen, Lingen & Feng, Yuanli & Xiong, Bing, 2017. "Thermoelectric generator for industrial gas phase waste heat recovery," Energy, Elsevier, vol. 135(C), pages 83-90.
  23. Antoine Fontaine & Laurence Rocher, 2021. "Energy recovery on the agenda. Waste heat: a matter of public policy and social science concern," Post-Print halshs-02971862, HAL.
  24. Chang, Chenglin & Wang, Yufei & Ma, Jiaze & Chen, Xiaolu & Feng, Xiao, 2018. "An energy hub approach for direct interplant heat integration," Energy, Elsevier, vol. 159(C), pages 878-890.
  25. Xu, Z.Y. & Wang, R.Z. & Yang, Chun, 2019. "Perspectives for low-temperature waste heat recovery," Energy, Elsevier, vol. 176(C), pages 1037-1043.
  26. Somogyi, Viola & Sebestyén, Viktor & Domokos, Endre, 2018. "Assessment of wastewater heat potential for district heating in Hungary," Energy, Elsevier, vol. 163(C), pages 712-721.
  27. Hür Bütün & Ivan Kantor & François Maréchal, 2019. "Incorporating Location Aspects in Process Integration Methodology," Energies, MDPI, vol. 12(17), pages 1-45, August.
  28. Chen, Xiaohui & Zheng, Danxing & Chen, Juan, 2014. "An approach to obtain Heat Integration scheme with higher viability for complex system," Energy, Elsevier, vol. 78(C), pages 720-731.
  29. Matthias Rathjens & Georg Fieg, 2019. "Cost-Optimal Heat Exchanger Network Synthesis Based on a Flexible Cost Functions Framework," Energies, MDPI, vol. 12(5), pages 1-18, February.
  30. Paul Christodoulides & Lazaros Aresti & Gregoris P. Panayiotou & Savvas Tassou & Georgios A. Florides, 2022. "Adoption of Waste Heat Recovery Technologies: Reviewing the Relevant Barriers and Recommendations on How to Overcome Them," SN Operations Research Forum, Springer, vol. 3(1), pages 1-21, March.
  31. Utlu, Zafer, 2015. "Investigation of the potential for heat recovery at low, medium, and high stages in the Turkish industrial sector (TIS): An application," Energy, Elsevier, vol. 81(C), pages 394-405.
  32. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
  33. Mariusz Tańczuk & Maciej Masiukiewicz & Stanisław Anweiler & Robert Junga, 2018. "Technical Aspects and Energy Effects of Waste Heat Recovery from District Heating Boiler Slag," Energies, MDPI, vol. 11(4), pages 1-19, March.
  34. Wang, Yufei & Chang, Chenglin & Feng, Xiao, 2015. "A systematic framework for multi-plants Heat Integration combining Direct and Indirect Heat Integration methods," Energy, Elsevier, vol. 90(P1), pages 56-67.
  35. Diban, Pitchaimuthu & Foo, Dominic C.Y., 2019. "A pinch-based automated targeting technique for heating medium system," Energy, Elsevier, vol. 166(C), pages 193-212.
  36. Jiang, Binfan & Xia, Dehong & Zhang, Huili & Pei, Hao & Liu, Xiangjun, 2020. "Effective waste heat recovery from industrial high-temperature granules: A Moving Bed Indirect Heat Exchanger with embedded agitation," Energy, Elsevier, vol. 208(C).
  37. Hackl, Roman & Harvey, Simon, 2013. "Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters," Applied Energy, Elsevier, vol. 112(C), pages 1500-1509.
  38. Xingyun Yan & Lingyu Wang & Mingzhu Fang & Jie Hu, 2022. "How Can Industrial Parks Achieve Carbon Neutrality? Literature Review and Research Prospect Based on the CiteSpace Knowledge Map," Sustainability, MDPI, vol. 15(1), pages 1-29, December.
  39. Ji, Feng & Dong, Yachao & Sun, Xiaojing & Liu, Linlin & Du, Jian, 2022. "Industrial park heat integration considering centralized and distributed waste heat recovery cycle systems," Applied Energy, Elsevier, vol. 318(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.