IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v35y2010i12p4671-4678.html
   My bibliography  Save this item

Potential for reducing GHG emissions and energy consumption from implementing the aluminum intensive vehicle fleet in China

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
  2. Hong, Taehoon & Jeong, Kwangbok & Koo, Choongwan, 2018. "An optimized gene expression programming model for forecasting the national CO2 emissions in 2030 using the metaheuristic algorithms," Applied Energy, Elsevier, vol. 228(C), pages 808-820.
  3. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi & Hang, Wen, 2015. "Scenario analysis of energy consumption and greenhouse gas emissions from China's passenger vehicles," Energy, Elsevier, vol. 91(C), pages 151-159.
  4. Shulin Lan & Ming-Lang Tseng, 2018. "Coordinated Development of Metropolitan Logistics and Economy Toward Sustainability," Computational Economics, Springer;Society for Computational Economics, vol. 52(4), pages 1113-1138, December.
  5. Khalife, Esmail & Kazerooni, Hanif & Mirsalim, Mostafa & Roodbar Shojaei, Taha & Mohammadi, Pouya & Salleh, Amran Mohd & Najafi, Bahman & Tabatabaei, Meisam, 2017. "Experimental investigation of low-level water in waste-oil produced biodiesel-diesel fuel blend," Energy, Elsevier, vol. 121(C), pages 331-340.
  6. Wu, Jingwen & Posen, I. Daniel & MacLean, Heather L., 2021. "Trade-offs between vehicle fuel economy and performance: Evidence from heterogeneous firms in China," Energy Policy, Elsevier, vol. 156(C).
  7. Hao, Han & Geng, Yong & Hang, Wen, 2016. "GHG emissions from primary aluminum production in China: Regional disparity and policy implications," Applied Energy, Elsevier, vol. 166(C), pages 264-272.
  8. Wu, Tian & Shang, Zhe & Tian, Xin & Wang, Shouyang, 2016. "How hyperbolic discounting preference affects Chinese consumers’ consumption choice between conventional and electric vehicles," Energy Policy, Elsevier, vol. 97(C), pages 400-413.
  9. Chew, K.V. & Haseeb, A.S.M.A. & Masjuki, H.H. & Fazal, M.A. & Gupta, M., 2013. "Corrosion of magnesium and aluminum in palm biodiesel: A comparative evaluation," Energy, Elsevier, vol. 57(C), pages 478-483.
  10. Massimo Delogu & Francesco Del Pero & Marco Pierini, 2016. "Lightweight Design Solutions in the Automotive Field: Environmental Modelling Based on Fuel Reduction Value Applied to Diesel Turbocharged Vehicles," Sustainability, MDPI, vol. 8(11), pages 1-16, November.
  11. Jaunky, Vishal Chandr, 2013. "Are Shocks To Aluminium Consumption Transitory Or Permanent?," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 9(1-2), January.
  12. Garcia, Rita & Freire, Fausto, 2017. "A review of fleet-based life-cycle approaches focusing on energy and environmental impacts of vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 935-945.
  13. Wu, Tian & Shen, Qu & Xu, Ming & Peng, Tianduo & Ou, Xunmin, 2018. "Development and application of an energy use and CO2 emissions reduction evaluation model for China's online car hailing services," Energy, Elsevier, vol. 154(C), pages 298-307.
  14. Adeel ur Rehman & Bhajan Lal, 2022. "Gas Hydrate-Based CO 2 Capture: A Journey from Batch to Continuous," Energies, MDPI, vol. 15(21), pages 1-27, November.
  15. Ji, Shaobo & Chen, Qiulin & Shu, Minglei & Tian, Guohong & Liao, Baoliang & Lv, Chengju & Li, Meng & Lan, Xin & Cheng, Yong, 2020. "Influence of operation management on fuel consumption of coach fleet," Energy, Elsevier, vol. 203(C).
  16. Ning Ding & Ning Liu & Bin Lu & Jianxin Yang, 2021. "Life cycle greenhouse gas emissions of aluminum based on regional industrial transfer in China," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1657-1672, December.
  17. Dindarloo, Saeid R. & Siami-Irdemoosa, Elnaz, 2016. "Determinants of fuel consumption in mining trucks," Energy, Elsevier, vol. 112(C), pages 232-240.
  18. González Palencia, Juan C. & Sakamaki, Tsukasa & Araki, Mikiya & Shiga, Seiichi, 2015. "Impact of powertrain electrification, vehicle size reduction and lightweight materials substitution on energy use, CO2 emissions and cost of a passenger light-duty vehicle fleet," Energy, Elsevier, vol. 93(P2), pages 1489-1504.
  19. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2011. "Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet," Energy, Elsevier, vol. 36(11), pages 6520-6528.
  20. Viñoles-Cebolla, Rosario & Bastante-Ceca, María José & Capuz-Rizo, Salvador F., 2015. "An integrated method to calculate an automobile's emissions throughout its life cycle," Energy, Elsevier, vol. 83(C), pages 125-136.
  21. González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2014. "Techno-economic assessment of lightweight and zero emission vehicles deployment in the passenger car fleet of developing countries," Applied Energy, Elsevier, vol. 123(C), pages 129-142.
  22. Zhaoshuai Pan & Zhaozhi Zhang & Dong Che, 2023. "Exploring Primary Aluminum Consumption: New Perspectives from Hybrid CEEMDAN-S-Curve Model," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
  23. Hao, Han & Wang, Sinan & Liu, Zongwei & Zhao, Fuquan, 2016. "The impact of stepped fuel economy targets on automaker's light-weighting strategy: The China case," Energy, Elsevier, vol. 94(C), pages 755-765.
  24. Liu, Zhe & Geng, Yong & Adams, Michelle & Dong, Liang & Sun, Lina & Zhao, Jingjing & Dong, Huijuan & Wu, Jiao & Tian, Xu, 2016. "Uncovering driving forces on greenhouse gas emissions in China’ aluminum industry from the perspective of life cycle analysis," Applied Energy, Elsevier, vol. 166(C), pages 253-263.
  25. Carvalho, Irene & Baier, Thomas & Simoes, Ricardo & Silva, Arlindo, 2012. "Reducing fuel consumption through modular vehicle architectures," Applied Energy, Elsevier, vol. 93(C), pages 556-563.
  26. Mayyas, Ahmad T. & Qattawi, Ala & Mayyas, Abdel Raouf & Omar, Mohammed A., 2012. "Life cycle assessment-based selection for a sustainable lightweight body-in-white design," Energy, Elsevier, vol. 39(1), pages 412-425.
  27. González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2012. "Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials," Energy, Elsevier, vol. 48(1), pages 548-565.
  28. Dedinec, Aleksandar & Markovska, Natasa & Taseska, Verica & Duic, Neven & Kanevce, Gligor, 2013. "Assessment of climate change mitigation potential of the Macedonian transport sector," Energy, Elsevier, vol. 57(C), pages 177-187.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.