IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v166y2019icp908-917.html
   My bibliography  Save this item

Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
  2. Jinhyeong Park & Munsu Lee & Gunwoo Kim & Seongyun Park & Jonghoon Kim, 2020. "Integrated Approach Based on Dual Extended Kalman Filter and Multivariate Autoregressive Model for Predicting Battery Capacity Using Health Indicator and SOC/SOH," Energies, MDPI, vol. 13(9), pages 1-20, April.
  3. Xu, Zhicheng & Wang, Jun & Lund, Peter D. & Zhang, Yaoming, 2021. "Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data," Energy, Elsevier, vol. 225(C).
  4. Karimi, Danial & Behi, Hamidreza & Berecibar, Maitane & Van Mierlo, Joeri, 2023. "A comprehensive coupled 0D-ECM to 3D-CFD thermal model for heat pipe assisted-air cooling thermal management system under fast charge and discharge," Applied Energy, Elsevier, vol. 339(C).
  5. Li, Kuo & Gao, Xiao & Liu, Caixia & Chang, Chun & Li, Xiaoyu, 2023. "A novel Co-estimation framework of state-of-charge, state-of-power and capacity for lithium-ion batteries using multi-parameters fusion method," Energy, Elsevier, vol. 269(C).
  6. Cheng, Ming & Zhang, Xuan & Ran, Aihua & Wei, Guodan & Sun, Hongbin, 2023. "Optimal dispatch approach for second-life batteries considering degradation with online SoH estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
  7. Vichard, L. & Ravey, A. & Venet, P. & Harel, F. & Pelissier, S. & Hissel, D., 2021. "A method to estimate battery SOH indicators based on vehicle operating data only," Energy, Elsevier, vol. 225(C).
  8. Tian, Tianzi & Yang, Jun & Li, Lei & Wang, Ning, 2023. "Reliability assessment of performance-based balanced systems with rebalancing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
  9. Jiang, Yihui & Xu, Jun & Hou, Wenlong & Mei, Xuesong, 2021. "A stack pressure based equivalent mechanical model of lithium-ion pouch batteries," Energy, Elsevier, vol. 221(C).
  10. Shuqing Li & Chuankun Ju & Jianliang Li & Ri Fang & Zhifei Tao & Bo Li & Tingting Zhang, 2021. "State-of-Charge Estimation of Lithium-Ion Batteries in the Battery Degradation Process Based on Recurrent Neural Network," Energies, MDPI, vol. 14(2), pages 1-21, January.
  11. Yunfeng Jiang & Louis J. Shrinkle & Raymond A. de Callafon, 2019. "Autonomous Demand-Side Current Scheduling of Parallel Buck Regulated Battery Modules," Energies, MDPI, vol. 12(11), pages 1-20, May.
  12. Shunli Wang & Pu Ren & Paul Takyi-Aninakwa & Siyu Jin & Carlos Fernandez, 2022. "A Critical Review of Improved Deep Convolutional Neural Network for Multi-Timescale State Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 15(14), pages 1-27, July.
  13. Wang, Qiao & Ye, Min & Wei, Meng & Lian, Gaoqi & Li, Yan, 2023. "Deep convolutional neural network based closed-loop SOC estimation for lithium-ion batteries in hierarchical scenarios," Energy, Elsevier, vol. 263(PB).
  14. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
  15. Guo, Yuanjun & Yang, Zhile & Liu, Kailong & Zhang, Yanhui & Feng, Wei, 2021. "A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system," Energy, Elsevier, vol. 219(C).
  16. Li, Shuangqi & He, Hongwen & Zhao, Pengfei & Cheng, Shuang, 2022. "Health-Conscious vehicle battery state estimation based on deep transfer learning," Applied Energy, Elsevier, vol. 316(C).
  17. Wang, Xiaofei & Sun, Quan & Kou, Xiao & Ma, Wentao & Zhang, Hong & Liu, Rui, 2022. "Noise immune state of charge estimation of li-ion battery via the extreme learning machine with mixture generalized maximum correntropy criterion," Energy, Elsevier, vol. 239(PD).
  18. Zhan, Mingjing & Wu, Baigong & Xu, Guoqi & Li, Wenjuan & Liang, Darong & Zhang, Xiao, 2023. "Application of adaptive extended Kalman algorithm based on strong tracking fading factor in Stat-of-Charge estimation of lithium-ion battery," Energy, Elsevier, vol. 284(C).
  19. Song, Ziyou & Hou, Jun & Li, Xuefeng & Wu, Xiaogang & Hu, Xiaosong & Hofmann, Heath & Sun, Jing, 2020. "The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection," Energy, Elsevier, vol. 193(C).
  20. Pei, Pucheng & Zhou, Qibin & Wu, Lei & Wu, Ziyao & Hua, Jianfeng & Fan, Huimin, 2020. "Capacity estimation for lithium-ion battery using experimental feature interval approach," Energy, Elsevier, vol. 203(C).
  21. Li, Shuangqi & He, Hongwen & Su, Chang & Zhao, Pengfei, 2020. "Data driven battery modeling and management method with aging phenomenon considered," Applied Energy, Elsevier, vol. 275(C).
  22. Turksoy, Arzu & Teke, Ahmet & Alkaya, Alkan, 2020. "A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  23. Xu, Huanwei & Wu, Lingfeng & Xiong, Shizhe & Li, Wei & Garg, Akhil & Gao, Liang, 2023. "An improved CNN-LSTM model-based state-of-health estimation approach for lithium-ion batteries," Energy, Elsevier, vol. 276(C).
  24. Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
  25. Tarhan, Burak & Yetik, Ozge & Karakoc, Tahir Hikmet, 2021. "Hybrid battery management system design for electric aircraft," Energy, Elsevier, vol. 234(C).
  26. Esfandyari, M.J. & Esfahanian, V. & Hairi Yazdi, M.R. & Nehzati, H. & Shekoofa, O., 2019. "A new approach to consider the influence of aging state on Lithium-ion battery state of power estimation for hybrid electric vehicle," Energy, Elsevier, vol. 176(C), pages 505-520.
  27. Li, Xining & Ju, Lingling & Geng, Guangchao & Jiang, Quanyuan, 2023. "Data-driven state-of-health estimation for lithium-ion battery based on aging features," Energy, Elsevier, vol. 274(C).
  28. Md Ohirul Qays & Yonis Buswig & Md Liton Hossain & Ahmed Abu-Siada, 2020. "Active Charge Balancing Strategy Using the State of Charge Estimation Technique for a PV-Battery Hybrid System," Energies, MDPI, vol. 13(13), pages 1-16, July.
  29. Bockrath, Steffen & Lorentz, Vincent & Pruckner, Marco, 2023. "State of health estimation of lithium-ion batteries with a temporal convolutional neural network using partial load profiles," Applied Energy, Elsevier, vol. 329(C).
  30. Chein-Chung Sun & Chun-Hung Chou & Yu-Liang Lin & Yu-Hua Huang, 2022. "A Cost-Effective Passive/Active Hybrid Equalizer Circuit Design," Energies, MDPI, vol. 15(6), pages 1-20, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.