IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v48y2012icp537-550.html
   My bibliography  Save this item

Energy consumption and CO2 emission impacts of vehicle electrification in three developed regions of China

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Xiong, Siqin & Wang, Yunshi & Bai, Bo & Ma, Xiaoming, 2021. "A hybrid life cycle assessment of the large-scale application of electric vehicles," Energy, Elsevier, vol. 216(C).
  2. Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
  3. Zhang, Xingping & Liang, Yanni & Yu, Enhai & Rao, Rao & Xie, Jian, 2017. "Review of electric vehicle policies in China: Content summary and effect analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 698-714.
  4. Sarmad Zaman Rajper & Johan Albrecht, 2020. "Prospects of Electric Vehicles in the Developing Countries: A Literature Review," Sustainability, MDPI, vol. 12(5), pages 1-19, March.
  5. Roozbeh Jalali & Seama Koohi-Fayegh & Khalil El-Khatib & Daniel Hoornweg & Heng Li, 2017. "Investigating the Potential of Ridesharing to Reduce Vehicle Emissions," Urban Planning, Cogitatio Press, vol. 2(2), pages 26-40.
  6. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
  7. Jianlei Lang & Shuiyuan Cheng & Ying Zhou & Beibei Zhao & Haiyan Wang & Shujing Zhang, 2013. "Energy and Environmental Implications of Hybrid and Electric Vehicles in China," Energies, MDPI, vol. 6(5), pages 1-23, May.
  8. Liu, Yang & Wang, Yu & Huo, Hong, 2013. "Temporal and spatial variations in on-road energy use and CO2 emissions in China, 1978–2008," Energy Policy, Elsevier, vol. 61(C), pages 544-550.
  9. Yali Zheng & Xiaoyi He & Hewu Wang & Michael Wang & Shaojun Zhang & Dong Ma & Binggang Wang & Ye Wu, 2020. "Well-to-wheels greenhouse gas and air pollutant emissions from battery electric vehicles in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(3), pages 355-370, March.
  10. Fortes, Patrícia & Simoes, Sofia G. & Gouveia, João Pedro & Seixas, Júlia, 2019. "Electricity, the silver bullet for the deep decarbonisation of the energy system? Cost-effectiveness analysis for Portugal," Applied Energy, Elsevier, vol. 237(C), pages 292-303.
  11. Gong, J.W. & Li, Y.P. & Lv, J. & Huang, G.H. & Suo, C. & Gao, P.P., 2022. "Development of an integrated bi-level model for China’s multi-regional energy system planning under uncertainty," Applied Energy, Elsevier, vol. 308(C).
  12. Zhao, Xin & Doering, Otto C. & Tyner, Wallace E., 2015. "The economic competitiveness and emissions of battery electric vehicles in China," Applied Energy, Elsevier, vol. 156(C), pages 666-675.
  13. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin & Yue, Wen Long & Zou, Xin, 2019. "Multi-criteria analysis of policies for implementing clean energy vehicles in China," Energy Policy, Elsevier, vol. 129(C), pages 826-840.
  14. Zhou, Guanghui & Ou, Xunmin & Zhang, Xiliang, 2013. "Development of electric vehicles use in China: A study from the perspective of life-cycle energy consumption and greenhouse gas emissions," Energy Policy, Elsevier, vol. 59(C), pages 875-884.
  15. Feiqi Liu & Fuquan Zhao & Zongwei Liu & Han Hao, 2018. "China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts," Energies, MDPI, vol. 11(12), pages 1-19, November.
  16. Li, Ying & Davis, Chris & Lukszo, Zofia & Weijnen, Margot, 2016. "Electric vehicle charging in China’s power system: Energy, economic and environmental trade-offs and policy implications," Applied Energy, Elsevier, vol. 173(C), pages 535-554.
  17. Zheng, Bo & Zhang, Qiang & Borken-Kleefeld, Jens & Huo, Hong & Guan, Dabo & Klimont, Zbigniew & Peters, Glen P. & He, Kebin, 2015. "How will greenhouse gas emissions from motor vehicles be constrained in China around 2030?," Applied Energy, Elsevier, vol. 156(C), pages 230-240.
  18. Xingping Zhang & Rao Rao & Jian Xie & Yanni Liang, 2014. "The Current Dilemma and Future Path of China’s Electric Vehicles," Sustainability, MDPI, vol. 6(3), pages 1-27, March.
  19. Tan, Ruipeng & Tang, Di & Lin, Boqiang, 2018. "Policy impact of new energy vehicles promotion on air quality in Chinese cities," Energy Policy, Elsevier, vol. 118(C), pages 33-40.
  20. Requia, Weeberb J. & Adams, Matthew D. & Arain, Altaf & Koutrakis, Petros & Ferguson, Mark, 2017. "Carbon dioxide emissions of plug-in hybrid electric vehicles: A life-cycle analysis in eight Canadian cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1390-1396.
  21. Renjie Wang & Yuanyuan Song & Honglei Xu & Yue Li & Jie Liu, 2022. "Life Cycle Assessment of Energy Consumption and CO 2 Emission from HEV, PHEV and BEV for China in the Past, Present and Future," Energies, MDPI, vol. 15(18), pages 1-16, September.
  22. Yu Gan & Zifeng Lu & Xin He & Michael Wang & Amer Ahmad Amer, 2023. "Cradle-to-Grave Lifecycle Analysis of Greenhouse Gas Emissions of Light-Duty Passenger Vehicles in China: Towards a Carbon-Neutral Future," Sustainability, MDPI, vol. 15(3), pages 1-14, February.
  23. Hofmann, Jana & Guan, Dabo & Chalvatzis, Konstantinos & Huo, Hong, 2016. "Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China," Applied Energy, Elsevier, vol. 184(C), pages 995-1003.
  24. Yang, Tianqi & Shu, Yun & Zhang, Shaohui & Wang, Hongchang & Zhu, Jinwei & Wang, Fan, 2023. "Impacts of end-use electrification on air quality and CO2 emissions in China's northern cities in 2030," Energy, Elsevier, vol. 278(PA).
  25. Wang, Renjie & Wu, Ye & Ke, Wenwei & Zhang, Shaojun & Zhou, Boya & Hao, Jiming, 2015. "Can propulsion and fuel diversity for the bus fleet achieve the win–win strategy of energy conservation and environmental protection?," Applied Energy, Elsevier, vol. 147(C), pages 92-103.
  26. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.
  27. Wu, Tian & Ma, Lin & Mao, Zhonggen & Ou, Xunmin, 2015. "Setting up charging electric stations within residential communities in current China: Gaming of government agencies and property management companies," Energy Policy, Elsevier, vol. 77(C), pages 216-226.
  28. Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.
  29. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  30. Lena Ahmadi & Ali Elkamel & Sabah A. Abdul-Wahab & Michael Pan & Eric Croiset & Peter L. Douglas & Evgueniy Entchev, 2015. "Multi-Period Optimization Model for Electricity Generation Planning Considering Plug-in Hybrid Electric Vehicle Penetration," Energies, MDPI, vol. 8(5), pages 1-25, May.
  31. Jianjun Liu & Jixian Cui & Yixi Li & Yinping Luo & Qianru Zhu & Yutao Luo, 2021. "Synergistic Air Pollutants and GHG Reduction Effect of Commercial Vehicle Electrification in Guangdong’s Public Service Sector," Sustainability, MDPI, vol. 13(19), pages 1-15, October.
  32. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
  33. Zhang, Shaojun & Wu, Ye & Hu, Jingnan & Huang, Ruikun & Zhou, Yu & Bao, Xiaofeng & Fu, Lixin & Hao, Jiming, 2014. "Can Euro V heavy-duty diesel engines, diesel hybrid and alternative fuel technologies mitigate NOX emissions? New evidence from on-road tests of buses in China," Applied Energy, Elsevier, vol. 132(C), pages 118-126.
  34. Abdul-Manan, Amir F.N., 2015. "Uncertainty and differences in GHG emissions between electric and conventional gasoline vehicles with implications for transport policy making," Energy Policy, Elsevier, vol. 87(C), pages 1-7.
  35. Ning Yang & Lei Yang & Feng Xu & Xue Han & Bin Liu & Naiyuan Zheng & Yuan Li & Yu Bai & Liwei Li & Jiguang Wang, 2022. "Vehicle Emission Changes in China under Different Control Measures over Past Two Decades," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
  36. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
  37. Ou, Shiqi & Lin, Zhenhong & He, Xin & Przesmitzki, Steven, 2018. "Estimation of vehicle home parking availability in China and quantification of its potential impacts on plug-in electric vehicle ownership cost," Transport Policy, Elsevier, vol. 68(C), pages 107-117.
  38. He, Liqiang & Hu, Jingnan & Zhang, Shaojun & Wu, Ye & Zhu, Rencheng & Zu, Lei & Bao, Xiaofeng & Lai, Yitu & Su, Sheng, 2018. "The impact from the direct injection and multi-port fuel injection technologies for gasoline vehicles on solid particle number and black carbon emissions," Applied Energy, Elsevier, vol. 226(C), pages 819-826.
  39. Zhou, Boya & Wu, Ye & Zhou, Bin & Wang, Renjie & Ke, Wenwei & Zhang, Shaojun & Hao, Jiming, 2016. "Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions," Energy, Elsevier, vol. 96(C), pages 603-613.
  40. Susheng Wang & Gang Chen & Dawei Huang, 2021. "Can the New Energy Vehicle Pilot Policy Achieve Green Innovation and Emission Reduction?—A Difference-in-Differences Analysis on the Evaluation of China’s New Energy Fiscal Subsidy Policy," Sustainability, MDPI, vol. 13(15), pages 1-21, August.
  41. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Un, Puikei & Zhou, Yu & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China," Energy, Elsevier, vol. 69(C), pages 247-257.
  42. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Yang, Liuhanzi & Li, Zhenhua & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 emissions of urban public buses in Beijing," Applied Energy, Elsevier, vol. 113(C), pages 1645-1655.
  43. Jean-Michel Clairand & Paulo Guerra-Terán & Xavier Serrano-Guerrero & Mario González-Rodríguez & Guillermo Escrivá-Escrivá, 2019. "Electric Vehicles for Public Transportation in Power Systems: A Review of Methodologies," Energies, MDPI, vol. 12(16), pages 1-22, August.
  44. Hao, Han & Geng, Yong & Wang, Hewu & Ouyang, Minggao, 2014. "Regional disparity of urban passenger transport associated GHG (greenhouse gas) emissions in China: A review," Energy, Elsevier, vol. 68(C), pages 783-793.
  45. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
  46. Na Zhou & Qiaosheng Wu & Xiangping Hu, 2020. "Research on the Policy Evolution of China’s New Energy Vehicles Industry," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
  47. Abdul-Manan, Amir F.N. & Won, Hyun-Woo & Li, Yang & Sarathy, S. Mani & Xie, Xiaomin & Amer, Amer A., 2020. "Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids," Applied Energy, Elsevier, vol. 267(C).
  48. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
  49. Teixeira, Ana Carolina Rodrigues & Sodré, José Ricardo, 2016. "Simulation of the impacts on carbon dioxide emissions from replacement of a conventional Brazilian taxi fleet by electric vehicles," Energy, Elsevier, vol. 115(P3), pages 1617-1622.
  50. Huiru Zhao & Nana Li, 2016. "Optimal Siting of Charging Stations for Electric Vehicles Based on Fuzzy Delphi and Hybrid Multi-Criteria Decision Making Approaches from an Extended Sustainability Perspective," Energies, MDPI, vol. 9(4), pages 1-22, April.
  51. Xianchun Tan & Yuan Zeng & Baihe Gu & Yi Wang & Baoguang Xu, 2018. "Scenario Analysis of Urban Road Transportation Energy Demand and GHG Emissions in China—A Case Study for Chongqing," Sustainability, MDPI, vol. 10(6), pages 1-32, June.
  52. Qiwei Li & Jiaxuan Zhang & Jiahui Chen & Xi Lu, 2019. "Reflection on opportunities for high penetration of renewable energy in China," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
  53. Yan, Shiyu, 2018. "The economic and environmental impacts of tax incentives for battery electric vehicles in Europe," Energy Policy, Elsevier, vol. 123(C), pages 53-63.
  54. Ebrahimi, Siavash & Mac Kinnon, Michael & Brouwer, Jack, 2018. "California end-use electrification impacts on carbon neutrality and clean air," Applied Energy, Elsevier, vol. 213(C), pages 435-449.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.