IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v265y2018i2p765-778.html
   My bibliography  Save this item

A Multi-Depot Two-Echelon Vehicle Routing Problem with Delivery Options Arising in the Last Mile Distribution

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yu, Vincent F. & Jodiawan, Panca & Hou, Ming-Lu & Gunawan, Aldy, 2021. "Design of a two-echelon freight distribution system in last-mile logistics considering covering locations and occasional drivers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
  2. Lin Zhou & Yanping Chen & Yi Jing & Youwei Jiang, 2021. "Evolutionary Game Analysis on Last Mile Delivery Resource Integration—Exploring the Behavioral Strategies between Logistics Service Providers, Property Service Companies and Customers," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
  3. Amira Saker & Amr Eltawil & Islam Ali, 2023. "Adaptive Large Neighborhood Search Metaheuristic for the Capacitated Vehicle Routing Problem with Parcel Lockers," Logistics, MDPI, vol. 7(4), pages 1-27, October.
  4. Dumez, Dorian & Lehuédé, Fabien & Péton, Olivier, 2021. "A large neighborhood search approach to the vehicle routing problem with delivery options," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 103-132.
  5. Peng, Xiaoshuai & Zhang, Lele & Thompson, Russell G. & Wang, Kangzhou, 2023. "A three-phase heuristic for last-mile delivery with spatial-temporal consolidation and delivery options," International Journal of Production Economics, Elsevier, vol. 266(C).
  6. Julian Hof & Michael Schneider, 2021. "Intraroute Resource Replenishment with Mobile Depots," Transportation Science, INFORMS, vol. 55(3), pages 660-686, May.
  7. Christian Tilk & Katharina Olkis & Stefan Irnich, 2020. "The Last-mile Vehicle Routing Problem with Delivery Options," Working Papers 2017, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
  8. Wang, Mengtong & Zhang, Canrong & Bell, Michael G.H. & Miao, Lixin, 2022. "A branch-and-price algorithm for location-routing problems with pick-up stations in the last-mile distribution system," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1258-1276.
  9. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2020. "Two-echelon vehicle routing problem with time windows and mobile satellites," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 179-201.
  10. Christian Tilk & Katharina Olkis & Stefan Irnich, 2021. "The last-mile vehicle routing problem with delivery options," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 877-904, December.
  11. Zang, Xiaoning & Jiang, Li & Liang, Changyong & Fang, Xiang, 2023. "Coordinated home and locker deliveries: An exact approach for the urban delivery problem with conflicting time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
  12. Nima Pourmohammadreza & Mohammad Reza Akbari Jokar, 2023. "A Novel Two-Phase Approach for Optimization of the Last-Mile Delivery Problem with Service Options," Sustainability, MDPI, vol. 15(10), pages 1-25, May.
  13. Qiuping Ni & Yuanxiang Tang, 2023. "A Bibliometric Visualized Analysis and Classification of Vehicle Routing Problem Research," Sustainability, MDPI, vol. 15(9), pages 1-37, April.
  14. Sluijk, Natasja & Florio, Alexandre M. & Kinable, Joris & Dellaert, Nico & Van Woensel, Tom, 2023. "Two-echelon vehicle routing problems: A literature review," European Journal of Operational Research, Elsevier, vol. 304(3), pages 865-886.
  15. Maja Kiba-Janiak & Katarzyna Cheba & Magdalena Mucowska & Leise Kelli de Oliveira, 2022. "Segmentation of e-customers in terms of sustainable last-mile delivery," Oeconomia Copernicana, Institute of Economic Research, vol. 13(4), pages 1117-1142, December.
  16. Zhou, Lin & Zhen, Lu & Baldacci, Roberto & Boschetti, Marco & Dai, Ying & Lim, Andrew, 2021. "A Heuristic Algorithm for solving a large-scale real-world territory design problem," Omega, Elsevier, vol. 103(C).
  17. Fuli Zhou & Yandong He & Felix T. S. Chan & Panpan Ma & Francesco Schiavone, 2022. "Joint Distribution Promotion by Interactive Factor Analysis using an Interpretive Structural Modeling Approach," SAGE Open, , vol. 12(1), pages 21582440221, February.
  18. Yu, Vincent F. & Jodiawan, Panca & Redi, A.A.N. Perwira, 2022. "Crowd-shipping problem with time windows, transshipment nodes, and delivery options," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
  19. Brandão, José, 2020. "A memory-based iterated local search algorithm for the multi-depot open vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 284(2), pages 559-571.
  20. Baldi, Mauro Maria & Manerba, Daniele & Perboli, Guido & Tadei, Roberto, 2019. "A Generalized Bin Packing Problem for parcel delivery in last-mile logistics," European Journal of Operational Research, Elsevier, vol. 274(3), pages 990-999.
  21. Yuan, Yuan & Cattaruzza, Diego & Ogier, Maxime & Semet, Frédéric & Vigo, Daniele, 2021. "A column generation based heuristic for the generalized vehicle routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
  22. Mühlbauer, Ferdinand & Fontaine, Pirmin, 2021. "A parallelised large neighbourhood search heuristic for the asymmetric two-echelon vehicle routing problem with swap containers for cargo-bicycles," European Journal of Operational Research, Elsevier, vol. 289(2), pages 742-757.
  23. Zhang, Yuankai & Sun, Lijun & Hu, Xiangpei & Zhao, Chen, 2019. "Order consolidation for the last-mile split delivery in online retailing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 309-327.
  24. Javid Ghahremani-Nahr & Hamed Nozari & Maryam Rahmaty & Parvaneh Zeraati Foukolaei & Azita Sherejsharifi, 2023. "Development of a Novel Fuzzy Hierarchical Location-Routing Optimization Model Considering Reliability," Logistics, MDPI, vol. 7(3), pages 1-16, September.
  25. John Olsson & Daniel Hellström & Henrik Pålsson, 2019. "Framework of Last Mile Logistics Research: A Systematic Review of the Literature," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
  26. dos Santos, André Gustavo & Viana, Ana & Pedroso, João Pedro, 2022. "2-echelon lastmile delivery with lockers and occasional couriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
  27. Wanjie Hu & Jianjun Dong & Bon-gang Hwang & Rui Ren & Zhilong Chen, 2019. "A Scientometrics Review on City Logistics Literature: Research Trends, Advanced Theory and Practice," Sustainability, MDPI, vol. 11(10), pages 1-27, May.
  28. Darvish, Maryam & Archetti, Claudia & Coelho, Leandro C. & Speranza, M. Grazia, 2019. "Flexible two-echelon location routing problem," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1124-1136.
  29. Gläser, Sina, 2022. "A waste collection problem with service type option," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1216-1230.
  30. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2021. "Two-echelon vehicle routing problem with satellite bi-synchronization," European Journal of Operational Research, Elsevier, vol. 288(3), pages 775-793.
  31. Marta Viu-Roig & Eduard J. Alvarez-Palau, 2020. "The Impact of E-Commerce-Related Last-Mile Logistics on Cities: A Systematic Literature Review," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
  32. Zhang, Lele & Ding, Pengyuan & Thompson, Russell G., 2023. "A stochastic formulation of the two-echelon vehicle routing and loading bay reservation problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
  33. Jasmin Grabenschweiger & Karl F. Doerner & Richard F. Hartl & Martin W. P. Savelsbergh, 2021. "The vehicle routing problem with heterogeneous locker boxes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 113-142, March.
  34. Magdalena Mucowska, 2021. "Trends of Environmentally Sustainable Solutions of Urban Last-Mile Deliveries on the E-Commerce Market—A Literature Review," Sustainability, MDPI, vol. 13(11), pages 1-26, May.
  35. Sergio Maria Patella & Gianluca Grazieschi & Valerio Gatta & Edoardo Marcucci & Stefano Carrese, 2020. "The Adoption of Green Vehicles in Last Mile Logistics: A Systematic Review," Sustainability, MDPI, vol. 13(1), pages 1-29, December.
  36. Bayliss, Christopher & Bektaş, Tolga & Tjon-Soei-Len, Vernon & Rohner, Remo, 2023. "Designing a multi-modal and variable-echelon delivery system for last-mile logistics," European Journal of Operational Research, Elsevier, vol. 307(2), pages 645-662.
  37. Arjun Paul & Ravi Shankar Kumar & Chayanika Rout & Adrijit Goswami, 2021. "A bi-objective two-echelon pollution routing problem with simultaneous pickup and delivery under multiple time windows constraint," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 962-993, December.
  38. Baniasadi, Pouya & Foumani, Mehdi & Smith-Miles, Kate & Ejov, Vladimir, 2020. "A transformation technique for the clustered generalized traveling salesman problem with applications to logistics," European Journal of Operational Research, Elsevier, vol. 285(2), pages 444-457.
  39. Vincent F. Yu & Hadi Susanto & Yu-Hsuan Yeh & Shih-Wei Lin & Yu-Tsung Huang, 2022. "The Vehicle Routing Problem with Simultaneous Pickup and Delivery and Parcel Lockers," Mathematics, MDPI, vol. 10(6), pages 1-22, March.
  40. Hendri Sutrisno & Chao-Lung Yang, 2023. "A two-echelon location routing problem with mobile satellites for last-mile delivery: mathematical formulation and clustering-based heuristic method," Annals of Operations Research, Springer, vol. 323(1), pages 203-228, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.