IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v101y2013icp678-685.html
   My bibliography  Save this item

Demand side management of a domestic dishwasher: Wind energy gains, financial savings and peak-time load reduction

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Troy Malatesta & Gregory M. Morrison & Jessica K. Breadsell & Christine Eon, 2023. "A Systematic Literature Review of the Interplay between Renewable Energy Systems and Occupant Practices," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
  2. Cosmo, Valeria Di & O’Hora, Denis, 2017. "Nudging electricity consumption using TOU pricing and feedback: evidence from Irish households," Journal of Economic Psychology, Elsevier, vol. 61(C), pages 1-14.
  3. G. Venkatesh, 2022. "Dishwashers: Literature Review to Summarise the Multi-Dimensionality of Sustainable Production and Consumption," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
  4. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
  5. Stenner, Karen & Frederiks, Elisha R. & Hobman, Elizabeth V. & Cook, Stephanie, 2017. "Willingness to participate in direct load control: The role of consumer distrust," Applied Energy, Elsevier, vol. 189(C), pages 76-88.
  6. Zare Oskouei, Morteza & Sadeghi Yazdankhah, Ahmad, 2017. "The role of coordinated load shifting and frequency-based pricing strategies in maximizing hybrid system profit," Energy, Elsevier, vol. 135(C), pages 370-381.
  7. Kotur, Dimitrije & Đurišić, Željko, 2017. "Optimal spatial and temporal demand side management in a power system comprising renewable energy sources," Renewable Energy, Elsevier, vol. 108(C), pages 533-547.
  8. Di Giorgio, Alessandro & Liberati, Francesco, 2014. "Near real time load shifting control for residential electricity prosumers under designed and market indexed pricing models," Applied Energy, Elsevier, vol. 128(C), pages 119-132.
  9. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Review analysis of COVID-19 impact on electricity demand for residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  10. Fernández, David & Pozo, Carlos & Folgado, Rubén & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano, 2017. "Multiperiod model for the optimal production planning in the industrial gases sector," Applied Energy, Elsevier, vol. 206(C), pages 667-682.
  11. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
  12. Ally, Clint & Bahadoorsingh, Sanjay & Singh, Arvind & Sharma, Chandrabhan, 2015. "A review and technical assessment integrating wind energy into an island power system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 863-874.
  13. Xu, Bing & Nayak, Amar & Gray, David & Ouenniche, Jamal, 2016. "Assessing energy business cases implemented in the North Sea Region and strategy recommendations," Applied Energy, Elsevier, vol. 172(C), pages 360-371.
  14. Motalleb, Mahdi & Ghorbani, Reza, 2017. "Non-cooperative game-theoretic model of demand response aggregator competition for selling stored energy in storage devices," Applied Energy, Elsevier, vol. 202(C), pages 581-596.
  15. Loganthurai, P. & Rajasekaran, V. & Gnanambal, K., 2016. "Evolutionary algorithm based optimum scheduling of processing units in rice industry to reduce peak demand," Energy, Elsevier, vol. 107(C), pages 419-430.
  16. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
  17. Kwon, Pil Seok & Østergaard, Poul, 2014. "Assessment and evaluation of flexible demand in a Danish future energy scenario," Applied Energy, Elsevier, vol. 134(C), pages 309-320.
  18. Qadrdan, Meysam & Ameli, Hossein & Strbac, Goran & Jenkins, Nicholas, 2017. "Efficacy of options to address balancing challenges: Integrated gas and electricity perspectives," Applied Energy, Elsevier, vol. 190(C), pages 181-190.
  19. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
  20. Gils, Hans Christian, 2014. "Assessment of the theoretical demand response potential in Europe," Energy, Elsevier, vol. 67(C), pages 1-18.
  21. Klaassen, E.A.M. & Kobus, C.B.A. & Frunt, J. & Slootweg, J.G., 2016. "Responsiveness of residential electricity demand to dynamic tariffs: Experiences from a large field test in the Netherlands," Applied Energy, Elsevier, vol. 183(C), pages 1065-1074.
  22. Elma, Onur & Taşcıkaraoğlu, Akın & Tahir İnce, A. & Selamoğulları, Uğur S., 2017. "Implementation of a dynamic energy management system using real time pricing and local renewable energy generation forecasts," Energy, Elsevier, vol. 134(C), pages 206-220.
  23. Neves, Diana & Pina, André & Silva, Carlos A., 2015. "Demand response modeling: A comparison between tools," Applied Energy, Elsevier, vol. 146(C), pages 288-297.
  24. Upton, J. & Murphy, M. & Shalloo, L. & Groot Koerkamp, P.W.G. & De Boer, I.J.M., 2015. "Assessing the impact of changes in the electricity price structure on dairy farm energy costs," Applied Energy, Elsevier, vol. 137(C), pages 1-8.
  25. Kobus, Charlotte B.A. & Klaassen, Elke A.M. & Mugge, Ruth & Schoormans, Jan P.L., 2015. "A real-life assessment on the effect of smart appliances for shifting households’ electricity demand," Applied Energy, Elsevier, vol. 147(C), pages 335-343.
  26. Rajeev, T. & Ashok, S., 2015. "Dynamic load-shifting program based on a cloud computing framework to support the integration of renewable energy sources," Applied Energy, Elsevier, vol. 146(C), pages 141-149.
  27. Janko, Samantha A. & Arnold, Michael R. & Johnson, Nathan G., 2016. "Implications of high-penetration renewables for ratepayers and utilities in the residential solar photovoltaic (PV) market," Applied Energy, Elsevier, vol. 180(C), pages 37-51.
  28. Daniel, Aemiro Melkamu, 2020. "Towards Sustainable Energy Consumption Electricity Demand Flexibility and Household Fuel Choice," Umeå Economic Studies 971, Umeå University, Department of Economics.
  29. Kamalanathan Ganesan & Jo~ao Tom'e Saraiva & Ricardo J. Bessa, 2021. "Functional Model of Residential Consumption Elasticity under Dynamic Tariffs," Papers 2111.11875, arXiv.org.
  30. Kernan, R. & Liu, X. & McLoone, S. & Fox, B., 2017. "Demand side management of an urban water supply using wholesale electricity price," Applied Energy, Elsevier, vol. 189(C), pages 395-402.
  31. Menke, Ruben & Abraham, Edo & Parpas, Panos & Stoianov, Ivan, 2016. "Demonstrating demand response from water distribution system through pump scheduling," Applied Energy, Elsevier, vol. 170(C), pages 377-387.
  32. Murphy, M.D. & O’Mahony, M.J. & Upton, J., 2015. "Comparison of control systems for the optimisation of ice storage in a dynamic real time electricity pricing environment," Applied Energy, Elsevier, vol. 149(C), pages 392-403.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.