IDEAS home Printed from https://ideas.repec.org/p/zbw/fubsbe/20169.html
   My bibliography  Save this paper

Constructing socio-demographic indicators for National Statistical Institutes using mobile phone data: Estimating literacy rates in Senegal

Author

Listed:
  • Schmid, Timo
  • Bruckschen, Fabian
  • Salvati, Nicola
  • Zbiranski, Till

Abstract

Modern systems of official statistics require the accurate and timely estimation of socio-demographic indicators for disaggregated geographical regions. Traditional data collection methods such as censuses or household surveys impose great financial and organizational burdens for National Statistical Institutes. The rise of new information and communication technologies offers promising sources to mitigate these shortcomings. In this paper we propose a unified approach for National Statistical Institutes based on small area estimation that allows for the estimation of socio-demographic indicators by using mobile phone data. In particular, the methodology is applied to mobile phone data from Senegal for deriving sub-national estimates of the share of illiterates disaggregated by gender. The estimates are used to identify hot spots of illiterates with a need for additional infrastructure or policy adjustments. Although the paper focuses on literacy as a particular socio-demographic indicator, the proposed approach is applicable to indicators from national statistics in general.

Suggested Citation

  • Schmid, Timo & Bruckschen, Fabian & Salvati, Nicola & Zbiranski, Till, 2016. "Constructing socio-demographic indicators for National Statistical Institutes using mobile phone data: Estimating literacy rates in Senegal," Discussion Papers 2016/9, Free University Berlin, School of Business & Economics.
  • Handle: RePEc:zbw:fubsbe:20169
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/130591/1/857466259.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gauri Sankar Datta & J. N. K. Rao & David Daniel Smith, 2005. "On measuring the variability of small area estimators under a basic area level model," Biometrika, Biometrika Trust, vol. 92(1), pages 183-196, March.
    2. Chris Elbers & Jean O. Lanjouw & Peter Lanjouw, 2003. "Micro--Level Estimation of Poverty and Inequality," Econometrica, Econometric Society, vol. 71(1), pages 355-364, January.
    3. Jean D. Opsomer & Mario Francisco-Fernández & Xiaoxi Li, 2012. "Model-Based Non-parametric Variance Estimation for Systematic Sampling," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 39(3), pages 528-542, September.
    4. Raghunathan, Trivellore E. & Xie, Dawei & Schenker, Nathaniel & Parsons, Van L. & Davis, William W. & Dodd, Kevin W. & Feuer, Eric J., 2007. "Combining Information From Two Surveys to Estimate County-Level Prevalence Rates of Cancer Risk Factors and Screening," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 474-486, June.
    5. Esther López-Vizcaíno & María José Lombardía & Domingo Morales, 2015. "Small area estimation of labour force indicators under a multinomial model with correlated time and area effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(3), pages 535-565, June.
    6. Lynn M. R. Ybarra & Sharon L. Lohr, 2008. "Small area estimation when auxiliary information is measured with error," Biometrika, Biometrika Trust, vol. 95(4), pages 919-931.
    7. González-Manteiga, W. & Lombardi­a, M.J. & Molina, I. & Morales, D. & Santamari­a, L., 2008. "Analytic and bootstrap approximations of prediction errors under a multivariate Fay-Herriot model," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5242-5252, August.
    8. Ray Chambers & Nicola Salvati & Nikos Tzavidis, 2016. "Semiparametric small area estimation for binary outcomes with application to unemployment estimation for local authorities in the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 453-479, February.
    9. Marhuenda, Yolanda & Morales, Domingo & del Carmen Pardo, María, 2014. "Information criteria for Fay–Herriot model selection," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 268-280.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timo Schmid & Fabian Bruckschen & Nicola Salvati & Till Zbiranski, 2017. "Constructing sociodemographic indicators for national statistical institutes by using mobile phone data: estimating literacy rates in Senegal," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1163-1190, October.
    2. Joscha Krause & Jan Pablo Burgard & Domingo Morales, 2022. "Robust prediction of domain compositions from uncertain data using isometric logratio transformations in a penalized multivariate Fay–Herriot model," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(1), pages 65-96, February.
    3. Boubeta, Miguel & Lombardía, María José & Morales, Domingo, 2017. "Poisson mixed models for studying the poverty in small areas," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 32-47.
    4. Szymkowiak Marcin & Młodak Andrzej & Wawrowski Łukasz, 2017. "Mapping Poverty at the Level of Subregions in Poland Using Indirect Estimation," Statistics in Transition New Series, Polish Statistical Association, vol. 18(4), pages 609-635, December.
    5. Sugasawa, Shonosuke & Kubokawa, Tatsuya, 2017. "Transforming response values in small area prediction," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 47-60.
    6. Paul Walter & Marcus Groß & Timo Schmid & Nikos Tzavidis, 2021. "Domain prediction with grouped income data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1501-1523, October.
    7. Marcin Szymkowiak & Andrzej Młodak & Łukasz Wawrowski, 2017. "Mapping Poverty At The Level Of Subregions In Poland Using Indirect Estimation," Statistics in Transition New Series, Polish Statistical Association, vol. 18(4), pages 609-635, December.
    8. Domingo Morales & Joscha Krause & Jan Pablo Burgard, 2022. "On the Use of Aggregate Survey Data for Estimating Regional Major Depressive Disorder Prevalence," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 344-368, March.
    9. Jan Pablo Burgard & María Dolores Esteban & Domingo Morales & Agustín Pérez, 2021. "Small area estimation under a measurement error bivariate Fay–Herriot model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 79-108, March.
    10. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2023. "Small area estimation of average compositions under multivariate nested error regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 651-676, June.
    11. Bijlsma Ineke & van den Brakel Jan & van der Velden Rolf & Allen Jim, 2020. "Estimating Literacy Levels at a Detailed Regional Level: an Application Using Dutch Data," Journal of Official Statistics, Sciendo, vol. 36(2), pages 251-274, June.
    12. repec:csb:stintr:v:17:y:2016:i:1:p:9-24 is not listed on IDEAS
    13. María Dolores Esteban & María José Lombardía & Esther López-Vizcaíno & Domingo Morales & Agustín Pérez, 2020. "Small area estimation of proportions under area-level compositional mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 793-818, September.
    14. Jan Pablo Burgard & Domingo Morales & Anna-Lena Wölwer, 2022. "Small area estimation of socioeconomic indicators for sampled and unsampled domains," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 287-314, June.
    15. Erciulescu Andreea L. & Fuller Wayne A., 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 9-24, March.
    16. Benavent, Roberto & Morales, Domingo, 2016. "Multivariate Fay–Herriot models for small area estimation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 372-390.
    17. Andreea L. Erciulescu & Wayne A. Fuller, 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Polish Statistical Association, vol. 17(1), pages 9-24, March.
    18. James Dawber & Nicola Salvati & Enrico Fabrizi & Nikos Tzavidis, 2022. "Expectile regression for multi‐category outcomes with application to small area estimation of labour force participation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 590-619, December.
    19. Stefano Marchetti & Caterina Giusti & Monica Pratesi, 2016. "The use of Twitter data to improve small area estimates of households’ share of food consumption expenditure in Italy [Die Nutzung von Twitter Daten um die Small Area Schätzungen vom Ausgabenanteil," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(2), pages 79-93, October.
    20. Walter, Paul & Groß, Markus & Schmid, Timo & Tzavidis, Nikos, 2017. "Estimation of linear and non-linear indicators using interval censored income data," Discussion Papers 2017/22, Free University Berlin, School of Business & Economics.
    21. Ranjbar, Setareh & Salvati, Nicola & Pacini, Barbara, 2023. "Estimating heterogeneous causal effects in observational studies using small area predictors," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).

    More about this item

    Keywords

    indicators; model-based estimation; official statistics; small area estimation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:fubsbe:20169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwfubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.