Advanced Search
MyIDEAS: Login

Biased quantitative measurement of interval ordered homothetic preferences

Contents:

Author Info

Abstract

We represent interval ordered homothetic preferences with a quantitative homothetic utility function and a multiplicative bias. When preferences are weakly ordered (i.e. when indifference is transitive), such a bias equals 1. When indifference is intransitive, the biasing factor is a positive function smaller than 1 and measures a threshold of indifference. We show that the bias is constant if and only if preferences are semiordered, and we identify conditions ensuring a linear utility function. We illustrate our approach with indifference sets on a two dimensional commodity space.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.econ.upf.edu/docs/papers/downloads/789.pdf
File Function: Whole Paper
Download Restriction: no

Bibliographic Info

Paper provided by Department of Economics and Business, Universitat Pompeu Fabra in its series Economics Working Papers with number 789.

as in new window
Length:
Date of creation: Jul 2004
Date of revision:
Handle: RePEc:upf:upfgen:789

Contact details of provider:
Web page: http://www.econ.upf.edu/

Related research

Keywords: Weak order; semiorder; interval order; intransitive indifference; independence; homothetic; representation; linear utility;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Bridges, Douglas S., 1986. "Numerical representation of interval orders on a topological space," Journal of Economic Theory, Elsevier, vol. 38(1), pages 160-166, February.
  2. Bertrand Lemaire & Marc Le Menestrel, 2004. "Homothetic interval orders," Economics Working Papers 793, Department of Economics and Business, Universitat Pompeu Fabra.
  3. Chipman, John S., 1974. "Homothetic preferences and aggregation," Journal of Economic Theory, Elsevier, vol. 8(1), pages 26-38, May.
  4. Oloriz, Esteban & Candeal, Juan Carlos & Indurain, Esteban, 1998. "Representability of Interval Orders," Journal of Economic Theory, Elsevier, vol. 78(1), pages 219-227, January.
  5. Candeal, J. C. & Indurain, E., 1995. "Homothetic and weakly homothetic preferences," Journal of Mathematical Economics, Elsevier, vol. 24(2), pages 147-158.
  6. Bosi, Gianni & Candeal, Juan Carlos & Indurain, Esteban, 2000. "Continuous representability of homothetic preferences by means of homogeneous utility functions," Journal of Mathematical Economics, Elsevier, vol. 33(3), pages 291-298, April.
  7. Dow, James & da Costa Werlang, Sergio Ribeiro, 1992. "Homothetic preferences," Journal of Mathematical Economics, Elsevier, vol. 21(4), pages 389-394.
  8. Chateauneuf, Alain, 1987. "Continuous representation of a preference relation on a connected topological space," Journal of Mathematical Economics, Elsevier, vol. 16(2), pages 139-146, April.
  9. Gianni Bosi, 2002. "Semicontinuous Representability of Homothetic Interval Orders by Means of Two Homogeneous Functionals," Theory and Decision, Springer, vol. 52(4), pages 303-312, June.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:789. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.