IDEAS home Printed from https://ideas.repec.org/p/upf/upfgen/1805.html
   My bibliography  Save this paper

Compositional data analysis — linear algebra, visualization and interpretation

Author

Abstract

Compositional data analysis is concerned with multivariate data that have a constant sum, usually 1 or 100%. These are data often found in biochemistry and geochemistry, but also in the social sciences, when relative values are of interest rather than the raw values. Recent applications are in the area of very high-dimensional "omics" data. Logratios are frequently used for this type of data, i.e. the logarithms of ratios of the components of the data vectors. These ratios raise interesting issues in matrix-vector representation, computation and interpretation, which will be dealt with in this chapter.

Suggested Citation

  • Michael Greenacre, 2021. "Compositional data analysis — linear algebra, visualization and interpretation," Economics Working Papers 1805, Department of Economics and Business, Universitat Pompeu Fabra.
  • Handle: RePEc:upf:upfgen:1805
    as

    Download full text from publisher

    File URL: https://econ-papers.upf.edu/papers/1805.pdf
    File Function: Whole Paper
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Greenacre, 2003. "Singular value decomposition of matched matrices," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(10), pages 1101-1113.
    2. John Aitchison & Michael Greenacre, 2002. "Biplots of compositional data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(4), pages 375-392, October.
    3. Michael Greenacre & Paul Lewi, 2009. "Distributional Equivalence and Subcompositional Coherence in the Analysis of Compositional Data, Contingency Tables and Ratio-Scale Measurements," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 29-54, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lombardo, Rosaria & Camminatiello, Ida & D'Ambra, Antonello & Beh, Eric J., 2021. "Assessing the Italian tax courts system by weighted three-way log-ratio analysis," Socio-Economic Planning Sciences, Elsevier, vol. 73(C).
    2. B. Baris Alkan & Afsin Sahin, 2011. "Measuring inequalities in the distribution of health workers by bi-plot approach: The case of Turkey," Journal of Economics and Behavioral Studies, AMH International, vol. 2(2), pages 57-66.
    3. Javier Palarea-Albaladejo & Josep Martín-Fernández & Jesús Soto, 2012. "Dealing with Distances and Transformations for Fuzzy C-Means Clustering of Compositional Data," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 144-169, July.
    4. Michael Greenacre & Paul Lewi, 2005. "Distributional equivalence and subcompositional coherence in the analysis of contingency tables, ratio-scale measurements and compositional data," Economics Working Papers 908, Department of Economics and Business, Universitat Pompeu Fabra, revised Aug 2007.
    5. Anna Maria Fiori & Francesco Porro, 2023. "A compositional analysis of systemic risk in European financial institutions," Annals of Finance, Springer, vol. 19(3), pages 325-354, September.
    6. Germ`a Coenders & N'uria Arimany Serrat, 2023. "Accounting statement analysis at industry level. A gentle introduction to the compositional approach," Papers 2305.16842, arXiv.org, revised Feb 2024.
    7. Greenacre, Michael, 2009. "Power transformations in correspondence analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3107-3116, June.
    8. Michael Greenacre, 2009. "Contribution biplots," Economics Working Papers 1162, Department of Economics and Business, Universitat Pompeu Fabra, revised Jan 2011.
    9. Michael Greenacre, 2023. "The chi-square standardization, combined with Box-Cox transformation, is a valid alternative to transforming to logratios in compositional data analysis," Economics Working Papers 1857, Department of Economics and Business, Universitat Pompeu Fabra.
    10. Huiwen Wang & Liying Shangguan & Rong Guan & Lynne Billard, 2015. "Principal component analysis for compositional data vectors," Computational Statistics, Springer, vol. 30(4), pages 1079-1096, December.
    11. repec:jss:jstsof:13:i05 is not listed on IDEAS
    12. Jan Skála & Radim Vácha & Pavel Čupr, 2018. "Which Compounds Contribute Most to Elevated Soil Pollution and the Corresponding Health Risks in Floodplains in the Headwater Areas of the Central European Watershed?," IJERPH, MDPI, vol. 15(6), pages 1-16, June.
    13. Maria Anna Di Palma & Michele Gallo, 2019. "External Information Model in a Compositional Perspective: Evaluation of Campania Adolescents’ Preferences in the Allocation of Leisure-Time," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 117-133, November.
    14. Cuadras, Carles M. & Greenacre, Michael, 2022. "A short history of statistical association: From correlation to correspondence analysis to copulas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    15. Karel Hron & Paula Brito & Peter Filzmoser, 2017. "Exploratory data analysis for interval compositional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 223-241, June.
    16. Alvis Cabrera & Lyvia Biagi & Aleix Beneyto & Ernesto Estremera & Iván Contreras & Marga Giménez & Ignacio Conget & Jorge Bondia & Josep Antoni Martín-Fernández & Josep Vehí, 2023. "Validation of a Probabilistic Prediction Model for Patients with Type 1 Diabetes Using Compositional Data Analysis," Mathematics, MDPI, vol. 11(5), pages 1-17, March.
    17. Michael Greenacre & Paul Lewi, 2009. "Distributional Equivalence and Subcompositional Coherence in the Analysis of Compositional Data, Contingency Tables and Ratio-Scale Measurements," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 29-54, April.
    18. Thinh Nguyen Van & Akinori Ozaki & Hoang Nguyen Tho & Anh Nguyen Duc & Yen Tran Thi & Kiyoshi Kurosawa, 2016. "Arsenic and Heavy Metal Contamination in Soils under Different Land Use in an Estuary in Northern Vietnam," IJERPH, MDPI, vol. 13(11), pages 1-13, November.
    19. Sergio Scippacercola & Zaccaria Petrillo & Annarita Mangiacapra & Stefano Caliro, 2019. "Multivariate approach to evaluate the relationship among geophysical and geochemical variables during an unrest period at Campi Flegrei caldera (Italy)," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2473-2489, September.
    20. Pittelkow Yvonne E & Wilson Susan R, 2003. "Visualisation of Gene Expression Data - the GE-biplot, the Chip-plot and the Gene-plot," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 2(1), pages 1-19, September.
    21. Aerni, Philipp, 2009. "What is sustainable agriculture? Empirical evidence of diverging views in Switzerland and New Zealand," Ecological Economics, Elsevier, vol. 68(6), pages 1872-1882, April.

    More about this item

    JEL classification:

    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:1805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.upf.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.