IDEAS home Printed from https://ideas.repec.org/p/upf/upfgen/908.html
   My bibliography  Save this paper

Distributional equivalence and subcompositional coherence in the analysis of contingency tables, ratio-scale measurements and compositional data

Author

Abstract

We consider two fundamental properties in the analysis of two-way tables of positive data: the principle of distributional equivalence, one of the cornerstones of correspondence analysis of contingency tables, and the principle of subcompositional coherence, which forms the basis of compositional data analysis. For an analysis to be subcompositionally coherent, it suffices to analyse the ratios of the data values. The usual approach to dimension reduction in compositional data analysis is to perform principal component analysis on the logarithms of ratios, but this method does not obey the principle of distributional equivalence. We show that by introducing weights for the rows and columns, the method achieves this desirable property. This weighted log-ratio analysis is theoretically equivalent to “spectral mapping”, a multivariate method developed almost 30 years ago for displaying ratio-scale data from biological activity spectra. The close relationship between spectral mapping and correspondence analysis is also explained, as well as their connection with association modelling. The weighted log-ratio methodology is applied here to frequency data in linguistics and to chemical compositional data in archaeology.

Suggested Citation

  • Michael Greenacre & Paul Lewi, 2005. "Distributional equivalence and subcompositional coherence in the analysis of contingency tables, ratio-scale measurements and compositional data," Economics Working Papers 908, Department of Economics and Business, Universitat Pompeu Fabra, revised Aug 2007.
  • Handle: RePEc:upf:upfgen:908
    as

    Download full text from publisher

    File URL: https://econ-papers.upf.edu/papers/908.pdf
    File Function: Whole Paper
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K. Ruben Gabriel, 2002. "Goodness of fit of biplots and correspondence analysis," Biometrika, Biometrika Trust, vol. 89(2), pages 423-436, June.
    2. John Aitchison & Michael Greenacre, 2002. "Biplots of compositional data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(4), pages 375-392, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Greenacre, 2006. "Tying up the loose ends in simple correspondence analysis," Economics Working Papers 940, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Michael Greenacre & Paul Lewi, 2009. "Distributional Equivalence and Subcompositional Coherence in the Analysis of Compositional Data, Contingency Tables and Ratio-Scale Measurements," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 29-54, April.
    3. B. Baris Alkan & Afsin Sahin, 2011. "Measuring inequalities in the distribution of health workers by bi-plot approach: The case of Turkey," Journal of Economics and Behavioral Studies, AMH International, vol. 2(2), pages 57-66.
    4. Michael Greenacre, 2016. "Selection and statistical analysis of compositional ratios," Economics Working Papers 1551, Department of Economics and Business, Universitat Pompeu Fabra.
    5. Giovanni C. Porzio & Giancarlo Ragozini & Domenico Vistocco, 2008. "On the use of archetypes as benchmarks," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 419-437, September.
    6. Javier Palarea-Albaladejo & Josep Martín-Fernández & Jesús Soto, 2012. "Dealing with Distances and Transformations for Fuzzy C-Means Clustering of Compositional Data," Journal of Classification, Springer;The Classification Society, vol. 29(2), pages 144-169, July.
    7. Anna Maria Fiori & Francesco Porro, 2023. "A compositional analysis of systemic risk in European financial institutions," Annals of Finance, Springer, vol. 19(3), pages 325-354, September.
    8. Germ`a Coenders & N'uria Arimany Serrat, 2023. "Accounting statement analysis at industry level. A gentle introduction to the compositional approach," Papers 2305.16842, arXiv.org, revised Feb 2024.
    9. Juan José Egozcue & Vera Pawlowsky-Glahn, 2019. "Rejoinder on: Compositional data: the sample space and its structure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 658-663, September.
    10. Marco Taussi & Caterina Gozzi & Orlando Vaselli & Jacopo Cabassi & Matia Menichini & Marco Doveri & Marco Romei & Alfredo Ferretti & Alma Gambioli & Barbara Nisi, 2022. "Contamination Assessment and Temporal Evolution of Nitrates in the Shallow Aquifer of the Metauro River Plain (Adriatic Sea, Italy) after Remediation Actions," IJERPH, MDPI, vol. 19(19), pages 1-24, September.
    11. Siham Zaaboubi & Lotfi Khiari & Salah Abdesselam & Jacques Gallichand & Fassil Kebede & Ghouati Kerrache, 2020. "Particle Size Imbalance Index from Compositional Analysis to Evaluate Cereal Sustainability for Arid Soils in Eastern Algeria," Agriculture, MDPI, vol. 10(7), pages 1-10, July.
    12. Gardner-Lubbe, Sugnet, 2016. "A triplot for multiclass classification visualisation," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 20-32.
    13. Michael Greenacre & Rafael Pardo, 2006. "Subset Correspondence Analysis," Sociological Methods & Research, , vol. 35(2), pages 193-218, November.
    14. Greenacre, Michael, 2009. "Power transformations in correspondence analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3107-3116, June.
    15. Michael Greenacre, 2009. "Contribution biplots," Economics Working Papers 1162, Department of Economics and Business, Universitat Pompeu Fabra, revised Jan 2011.
    16. Michael Greenacre, 2023. "The chi-square standardization, combined with Box-Cox transformation, is a valid alternative to transforming to logratios in compositional data analysis," Economics Working Papers 1857, Department of Economics and Business, Universitat Pompeu Fabra.
    17. Huiwen Wang & Liying Shangguan & Rong Guan & Lynne Billard, 2015. "Principal component analysis for compositional data vectors," Computational Statistics, Springer, vol. 30(4), pages 1079-1096, December.
    18. repec:jss:jstsof:13:i05 is not listed on IDEAS
    19. Jan Skála & Radim Vácha & Pavel Čupr, 2018. "Which Compounds Contribute Most to Elevated Soil Pollution and the Corresponding Health Risks in Floodplains in the Headwater Areas of the Central European Watershed?," IJERPH, MDPI, vol. 15(6), pages 1-16, June.
    20. Maria Anna Di Palma & Michele Gallo, 2019. "External Information Model in a Compositional Perspective: Evaluation of Campania Adolescents’ Preferences in the Allocation of Leisure-Time," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 117-133, November.
    21. Ulrich Kohler & Magdalena Luniak, 2005. "Data inspection using biplots," Stata Journal, StataCorp LP, vol. 5(2), pages 208-233, June.

    More about this item

    Keywords

    Association models; biplot; compositional data; contingency tables; correspondence analysis; distributional equivalence; log-ration transformation; ratio-scale data; singular value decomposition;
    All these keywords.

    JEL classification:

    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.upf.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.